Existence and continuity with respect to parameter of solutions to stochastic Volterra equations in a~plane
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study stochastic Volterra equations in the plane. These equations contain integrals with respect to local bounded variation fields and square-integrable strong martingales. We prove the existence and uniqueness of solutions of such equations with local integrable (in some measure) trajectories, assuming that the coefficients of equations possess the Lipschitz property with respect to the functional argument. We prove that the solution of a stochastic Volterra integral equation in the plane is continuous with respect to the parameter.
Keywords: two-parameter martingale, stopping line.
Mots-clés : stochastic Volterra equation
@article{IVM_2010_2_a2,
     author = {N. A. Kolodii},
     title = {Existence and continuity with respect to parameter of solutions to stochastic {Volterra} equations in a~plane},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--32},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a2/}
}
TY  - JOUR
AU  - N. A. Kolodii
TI  - Existence and continuity with respect to parameter of solutions to stochastic Volterra equations in a~plane
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 20
EP  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a2/
LA  - ru
ID  - IVM_2010_2_a2
ER  - 
%0 Journal Article
%A N. A. Kolodii
%T Existence and continuity with respect to parameter of solutions to stochastic Volterra equations in a~plane
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 20-32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a2/
%G ru
%F IVM_2010_2_a2
N. A. Kolodii. Existence and continuity with respect to parameter of solutions to stochastic Volterra equations in a~plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 20-32. http://geodesic.mathdoc.fr/item/IVM_2010_2_a2/

[1] Guschin A. A., “K obschei teorii sluchainykh polei na ploskosti”, UMN, 37:6 (1982), 53–74 | MR | Zbl

[2] Kleptsyna M. L., Veretennikov A. Yu., “O silnykh resheniyakh stokhasticheskikh uravnenii Ito–Volterra”, Teor. ver. i ee prim., 29:1 (1984), 154–158

[3] Pardoux E., Protter P., “Stochastic Volterra equations with anticipating coefficients”, Ann. of Probab., 18:4 (1990), 1635–1655 | DOI | MR | Zbl

[4] Kolodii A. M., “On conditions for existence of solutions of integral equations with stohastic line integrals”, Probab. Theory and Math. Stat., TEV, Vilnius, 1994, 405–422 | MR

[5] Guschin A. A., Mishura Yu. S., “Neravenstva Devisa i razlozhenie Gandi dlya dvuparametricheskikh silnykh martingalov. 1”, Teor. ver. i matem. stat., 1990, no. 42, 27–35 | MR

[6] Dozzi M., “Twoparameter stochastic processes”, Mathemat. Research., 61 (1991), 17–43 | MR | Zbl

[7] Stricker C., Yor M., “Calcul stochastique d'ependant d'un parametre”, Z. Wahrscheinlichkeitstheor. verw. Geb., 45 (1978), 109–133 | DOI | MR | Zbl

[8] Skorokhod A. V., “Ob izmerimosti sluchainykh protsessov”, Teor. ver. i ee prim., 25:1 (1980), 140–142 | MR | Zbl

[9] Kolodii N. A., “Some properties of random fields related to stochastic integrals with respect to strong martingales”, J. of Math. Sci., 137:1 (2006), 4531–4540 | DOI | MR

[10] Horvath L., “Gronwall–Bellman type integral inequalities in measure spaces”, J. Math. Anal. and Appl., 202:1 (1996), 183–193 | DOI | MR | Zbl

[11] Gikhman I. I., Skorokhod A. V., Upravlyaemye sluchainye protsessy, Nauk. dumka, Kiev, 1977, 250 pp. | MR