Instability of systems with linear delay reducible to singularly perturbed ones
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the stability of linear systems of differential equations with linear delay in the case when one of subsystems is singular. We establish sufficient conditions for the instability of solutions to such systems. We solve the considered problem with the help of the Laplace transformation.
Keywords: instability, functional-difference equation, asymptotic representation, meromorphic vector function.
Mots-clés : Laplace transformation
@article{IVM_2010_2_a0,
     author = {B. G. Grebenshchikov and S. I. Novikov},
     title = {Instability of systems with linear delay reducible to singularly perturbed ones},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_2_a0/}
}
TY  - JOUR
AU  - B. G. Grebenshchikov
AU  - S. I. Novikov
TI  - Instability of systems with linear delay reducible to singularly perturbed ones
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 3
EP  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_2_a0/
LA  - ru
ID  - IVM_2010_2_a0
ER  - 
%0 Journal Article
%A B. G. Grebenshchikov
%A S. I. Novikov
%T Instability of systems with linear delay reducible to singularly perturbed ones
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 3-13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_2_a0/
%G ru
%F IVM_2010_2_a0
B. G. Grebenshchikov; S. I. Novikov. Instability of systems with linear delay reducible to singularly perturbed ones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2010), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2010_2_a0/

[1] Grebenschikov B. G., “O suschestvovanii asimptoticheski periodicheskogo resheniya odnoi sistemy s zapazdyvaniem”, Izv. Uralsk. gos. un-ta. Ser. matem., mekhan., 2003, no. 26, 44–54

[2] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 382 pp. | MR | Zbl

[3] Mitropolskii Yu. A., Metod usredneniya v nelineinoi mekhanike, Nauk. dumka, Kiev, 1971, 440 pp. | MR

[4] Shimanov S. N., “Ob ustoichivosti differentsialno-raznostnykh uravnenii”, Ustoichivost i nelineinye kolebaniya, Izd-vo Uralsk. un-ta, Sverdlovsk, 1991, 95–98 | MR

[5] Gursa E., Kurs matematicheskogo analiza, T. 2, ch. 1, Gostekhizdat, M.–L., 1933, 271 pp.

[6] Grebenschikov B. G., “Ob ustoichivosti statsionarnykh sistem lineinykh differentsialnykh uravnenii neitralnogo tipa s zapazdyvaniem, lineino zavisyaschim ot vremeni”, Izv. vuzov. Matematika, 1991, no. 7, 69–71 | MR | Zbl

[7] Markushevich A. I., Kratkii kurs teorii analiticheskikh funktsii, Nauka, M., 1966, 388 pp. | MR | Zbl

[8] Kim A. V., Kwon W. H., Pimenov V. G. et al., Time-delay system toolbox (for use with MATLAB), Beta Version, Seul National University, Korea, Seul, 1998