Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_12_a8, author = {M. M. Shumafov}, title = {Stabilization of the second-order linear time-invariant control systems by a~delayed feedback}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {87--90}, publisher = {mathdoc}, number = {12}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_12_a8/} }
TY - JOUR AU - M. M. Shumafov TI - Stabilization of the second-order linear time-invariant control systems by a~delayed feedback JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 87 EP - 90 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_12_a8/ LA - ru ID - IVM_2010_12_a8 ER -
M. M. Shumafov. Stabilization of the second-order linear time-invariant control systems by a~delayed feedback. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 87-90. http://geodesic.mathdoc.fr/item/IVM_2010_12_a8/
[1] Bernstein D. S., “Some open problems in matrix theory arising in linear systems and control”, Linear Algebra Appl., 162–164 (1992), 409–432 | DOI | MR | Zbl
[2] Blondel V., Gevers M., Lindquist A., “Survey on the state of systems and control”, Eur. J. Control, 1:1 (1995), 5–23 | Zbl
[3] Syrmos V. L., Abdallah C. T., Dorato P., Grigoriadis K., “Static output feedback –a survey”, Automatica, 33:2 (1997), 125–137 | DOI | MR | Zbl
[4] Blondel V., Sontag E., Vidyasagar M., Willems J., Open problems in mathematical systems and control theory, Springer, London, 1999 | MR | Zbl
[5] Polyak B. T., Scherbakov P. S., “Trudnye zadachi lineinoi teorii upravleniya. Nekotorye podkhody k resheniyu”, Avtomatika i telemekhanika, 2005, no. 5, 7–46 | MR | Zbl
[6] Leonov G. A., Shumafov M. M., Metody stabilizatsii lineinykh upravlyaemykh sistem, Izd-vo S.-Peterb. un-ta, SPb., 2005
[7] Leonov G. A., “Stabilizatsionnaya problema Broketta”, Avtomatika i telemekhanika, 2001, no. 5, 190–193 | MR | Zbl
[8] Leonov G. A., “Problema Broketta v teorii ustoichivosti lineinykh differentsialnykh uravnenii”, Algebra i analiz, 13:4 (2001), 134–155 | MR | Zbl
[9] Moreau L., Aeyels D., “Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree”, Syst. Control Lett., 51:5 (2004), 395–406 | DOI | MR | Zbl
[10] Pyragas K., “Continuous control of chaos by self-controlling feedback”, Phys. Lett. A, 170:6 (1992), 421–428 | DOI
[11] Pyragas K., “Control of chaos via extended delay feedback”, Phys. Lett. A, 206:5–6 (1995), 323–330 | DOI | MR | Zbl
[12] Pyragas V., Pyragas K., “Delayed feedback control of the Lorenz system: an analytical treatment at a subcritical Hopf bifurcation”, Phys. Rev. E, 73 (2006), 036215 | DOI | MR
[13] Pyragas K., “Delayed feedback control of chaos”, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 364 (1846), 2309–2334 | DOI | MR
[14] Tamaševičius A., Mykolaitis G., Pyragas V., Pyragas K., “Delayed feedback control of periodic orbits without torsion in nonautonomous systems: theory and experiment”, Phys. Rev. E, 76:2 (2007), 026203, 6 pp. | DOI
[15] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976 | MR
[16] Pontryagin L. S., “O nulyakh nekotorykh elementarnykh transtsendentnykh funktsii”, Izv. AN SSSR. Ser. Matem., 6:3 (1942), 115–134 | MR | Zbl
[17] Chebotarev N. G., Meiman N. N., “Problema Rausa–Gurvitsa dlya polinomov i tselykh funktsii”, Tr. Matem. in-ta im. V. A. Steklova, 26, Izd-vo AN SSSR, M., 1949, 3–331 | MR | Zbl
[18] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR
[19] Neimark Yu. I., Dinamicheskie sistemy i upravlyaemye protsessy, Nauka, M., 1978 | MR
[20] Kiryanen A. I., Ustoichivost sistem s posledeistviem i ikh prilozheniya, Izd-vo S.-Peterb. un-ta, SPb., 1994 | MR