Approximation of almost periodic functions of two variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 82-86
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we study the deviations of periodic functions of two variables from the integral mean values and their Fourier transformations. In the class of uniform almost periodic functions of two variables we obtain estimates for the deviation from sums of the Zygmund–Marcinkiewicz type.
Keywords:
Fourier series, integral mean values, sums of the Zygmund–Marcinkiewicz type, trigonometric polynomials, almost periodic functions, Fourier exponents.
Mots-clés : Fourier transformation
Mots-clés : Fourier transformation
@article{IVM_2010_12_a7,
author = {Yu. Kh. Khasanov},
title = {Approximation of almost periodic functions of two variables},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {82--86},
year = {2010},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_12_a7/}
}
Yu. Kh. Khasanov. Approximation of almost periodic functions of two variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 82-86. http://geodesic.mathdoc.fr/item/IVM_2010_12_a7/
[1] Marcinkiewicz J., “Sur une méthode remarquable de sommation des séries doubles de Fourier”, Collected papers, Warszawa, 1964, 527–538
[2] Zhizhiashvili L. V., “O summirovanii dvoinykh ryadov Fure”, Sib. matem. zhurn., 8:3 (1967), 548–564 | Zbl
[3] Taberski R., “Abel summability of double Fourier series”, Bull. Acad. Polon. Sci. Ser. Sci. Math., Astron. et Phys., 18:6 (1970), 307–314 | MR | Zbl
[4] Timan M. F., Ponomarenko V. G., “O priblizhenii periodicheskikh funktsii dvukh peremennykh summami tipa Martsinkevicha”, Izv. vuzov. Matematika, 1975, no. 9, 59–67 | MR | Zbl