Solvability of the boundary value problem for a~partial quasilinear differential equation of the fourth order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 52-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use a topological method implying the reduction of the initial problem to solving an operational equation in a Hilbert space and consequent calculation of the rotation of the corresponding vector field. We show that in a sphere of a sufficiently large radius the problem has at least one generalized solution.
Keywords: operational equation, topological method, vector field rotation, generalized solution, Hilbert space.
@article{IVM_2010_12_a4,
     author = {S. N. Timergaliev and I. R. Mavleev},
     title = {Solvability of the boundary value problem for a~partial quasilinear differential equation of the fourth order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--57},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_12_a4/}
}
TY  - JOUR
AU  - S. N. Timergaliev
AU  - I. R. Mavleev
TI  - Solvability of the boundary value problem for a~partial quasilinear differential equation of the fourth order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 52
EP  - 57
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_12_a4/
LA  - ru
ID  - IVM_2010_12_a4
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%A I. R. Mavleev
%T Solvability of the boundary value problem for a~partial quasilinear differential equation of the fourth order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 52-57
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_12_a4/
%G ru
%F IVM_2010_12_a4
S. N. Timergaliev; I. R. Mavleev. Solvability of the boundary value problem for a~partial quasilinear differential equation of the fourth order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 52-57. http://geodesic.mathdoc.fr/item/IVM_2010_12_a4/

[1] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, In. lit., M., 1957

[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[4] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[5] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972 | MR | Zbl

[6] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, UMN, 23:1 (1968), 45–90 | MR | Zbl

[7] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Matem. sb., 117(159):2 (1982), 251–265 | MR | Zbl

[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR