Spectral properties of a~Hamiltonian of a~four-particle system on a~lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 32-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Hamiltonian of a system of four arbitrary quantum particles with pair contact (noncompact) potentials on a three-dimensional lattice perturbed by three-partial contact potentials. We describe the essential spectrum of the Schrödinger operator that corresponds to the four-particle system.
Keywords: Hamiltonian of a four-particles system, Schrödinger operator, essential spectrum, compact operator.
@article{IVM_2010_12_a2,
     author = {M. E. Muminov and U. R. Shodiev},
     title = {Spectral properties of {a~Hamiltonian} of a~four-particle system on a~lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--43},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_12_a2/}
}
TY  - JOUR
AU  - M. E. Muminov
AU  - U. R. Shodiev
TI  - Spectral properties of a~Hamiltonian of a~four-particle system on a~lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 32
EP  - 43
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_12_a2/
LA  - ru
ID  - IVM_2010_12_a2
ER  - 
%0 Journal Article
%A M. E. Muminov
%A U. R. Shodiev
%T Spectral properties of a~Hamiltonian of a~four-particle system on a~lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 32-43
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_12_a2/
%G ru
%F IVM_2010_12_a2
M. E. Muminov; U. R. Shodiev. Spectral properties of a~Hamiltonian of a~four-particle system on a~lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 32-43. http://geodesic.mathdoc.fr/item/IVM_2010_12_a2/

[1] Mogilner A. I., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Adv. Soviet Math., 5, 1991, 139–194 | MR | Zbl

[2] Zhislin G. M., “Issledovanie spektra operatora Shrëdingera dlya sistemy mnogikh chastits”, Tr. Mosk. matem. o-va, 9, 1960, 82–120

[3] van Winter C., “Theory of finite systems of particles. I. The Green function”, Mat.-Fys. Skr., Danske Vid. Selsk., 2:8 (1964), 1–60 | MR

[4] Hunziker W., “On the spectra of Schrödinger multiparticle Hamiltonians”, Helv. Phys. Acta, 39 (1969), 451–462 | MR

[5] Mepkupev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[6] Tsikon Kh., Frezi R., Kirish V., Saimon B., Operatory Shrëdingera, Mir, M., 1990

[7] Minlos R. A., Sinai Ya. G., “Issledovanie spektrov stokhasticheskikh operatorov, voznikayushikh v reshetchatykh modelyakh gaza”, Teor. matem. fiz., 2:2 (1970), 230–243 | MR

[8] Albeverio S., Lakaev S. N., Muminov Z. I., “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. H. Poincaré, 5:4 (2004), 743–772 | MR | Zbl

[9] Lakaev S. N., Muminov M. E., “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shrëdingera na reshetke”, Teor. matem. fiz., 135:3 (2003), 478–503 | MR | Zbl

[10] Albeverio S., Lakaev S. N., Abdullaev J. I., “On the finiteness of the discrete spectrum of four-particle lattice Schrödinger operator”, Rep. Math. Phys., 51:1 (2003), 43–70 | DOI | MR | Zbl

[11] Muminov M. E., “Teorema Khuntsikera–van Vintera–Zhislina chetypekhchastichnogo opepatopa Shpëdingepa na reshetke”, Teop. matem. fiz., 148:3 (2006), 428–443 | MR | Zbl

[12] Ëdgorov G. R., Muminov M. E., “O spektre odnogo modelnogo operatora v teorii vozmuschenii suschestvennogo spektra”, Teor. matem. fiz., 144:3 (2005), 544–554 | MR | Zbl

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[14] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970 | MR