The global search in the Tikhonov scheme
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this paper is to justify a general scheme for constructing two-stage iterative solution processes for irregular nonlinear operator equations based on the sequential approximate minimization of locally strongly convex Tikhonov functionals.
Keywords: ill-posed problem, Tikhonov scheme, global optimization, local strong convexity, source-wise representation.
@article{IVM_2010_12_a1,
     author = {M. Yu. Kokurin},
     title = {The global search in the {Tikhonov} scheme},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--31},
     publisher = {mathdoc},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_12_a1/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - The global search in the Tikhonov scheme
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 20
EP  - 31
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_12_a1/
LA  - ru
ID  - IVM_2010_12_a1
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T The global search in the Tikhonov scheme
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 20-31
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_12_a1/
%G ru
%F IVM_2010_12_a1
M. Yu. Kokurin. The global search in the Tikhonov scheme. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2010), pp. 20-31. http://geodesic.mathdoc.fr/item/IVM_2010_12_a1/

[1] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[2] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[3] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Fizmatlit, M., 1995 | MR | Zbl

[4] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[5] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[6] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR

[7] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 2000

[8] Ramlau R., “TIGRA–an iterative algorithm for regularizing nonlinear ill-posed problems”, Inverse Probl., 19:2 (2003), 433–465 | DOI | MR | Zbl

[9] Ramlau R., “On the use of fixed point iterations for the regularization of nonlinear ill-posed problems”, J. Inverse and Ill-Posed Probl., 13:2 (2005), 175–200 | MR | Zbl

[10] Ramlau R., Teschke G., “Tikhonov replacement functionals for iteratively solving nonlinear operator equations”, Inverse Probl., 21:5 (2005), 1571–1592 | DOI | MR | Zbl

[11] Kaltenbacher B., “Toward global convergence for strongly nonlinear ill-posed problems via a regularizing multilevel approach”, Numer. Funct. Anal. Optimization, 27:5–6 (2006), 637–665 | DOI | MR | Zbl

[12] Bakushinskii A. B., Kokurin M. Yu., Kozlov A. I., Stabiliziruyuschiesya metody gradientnogo tipa dlya resheniya neregulyarnykh nelineinykh operatornykh uravnenii, LKI, M., 2007