Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_11_a7, author = {G. G. Sharafutdinova}, title = {An operator method for studying the {Euler} problem on types of the loss of stability for a~pivoted rod under buckling load}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {86--91}, publisher = {mathdoc}, number = {11}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/} }
TY - JOUR AU - G. G. Sharafutdinova TI - An operator method for studying the Euler problem on types of the loss of stability for a~pivoted rod under buckling load JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 86 EP - 91 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/ LA - ru ID - IVM_2010_11_a7 ER -
%0 Journal Article %A G. G. Sharafutdinova %T An operator method for studying the Euler problem on types of the loss of stability for a~pivoted rod under buckling load %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2010 %P 86-91 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/ %G ru %F IVM_2010_11_a7
G. G. Sharafutdinova. An operator method for studying the Euler problem on types of the loss of stability for a~pivoted rod under buckling load. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/
[1] Yasinskii F. S., Izbrannye raboty po ustoichivosti szhatykh sterzhnei, GITTL, M., 1952
[2] Panovko Ya. G., Gubanova I. I., Ustoichivost i kolebaniya uprugikh sistem: sovremennye kontseptsii, paradoksy i oshibki, Kom-Kniga, M., 2006
[3] Azbelev N. V., Makagonova M. A., Plaksina V. P., “Variatsionnyi metod resheniya zadachi Eilera ob ustoichivosti uprugogo sterzhnya”, Izv. RAEN. Differents. uravneniya, 2004, no. 8, 10–13
[4] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[5] Azbelev N. V., Kultyshev S. Yu., Tsalyuk V. Z., Funktsionalno-differentsialnye uravneniya i variatsionnye zadachi, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2006 http://www.rcd.ru
[6] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1957 | MR | Zbl
[7] Ibragimova L. S., Yumagulov M. G., “Funktsionalizatsiya parametra i ee prilozheniya v zadache o lokalnykh bifurkatsiyakh dinamicheskikh sistem”, Avtomatika i telemekhanika, 2007, no. 4, 3–12 | MR | Zbl