An operator method for studying the Euler problem on types of the loss of stability for a~pivoted rod under buckling load
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a new method for defining the Euler critical forces. We construct a scheme that leads to asymptotic formulas defining the bending of a rod both for constant and variable rigidities. The obtained results are based on operator methods of the bifurcation theory.
Keywords: critical forces, asymptotic formulas, stability, balance state.
Mots-clés : bifurcation points
@article{IVM_2010_11_a7,
     author = {G. G. Sharafutdinova},
     title = {An operator method for studying the {Euler} problem on types of the loss of stability for a~pivoted rod under buckling load},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/}
}
TY  - JOUR
AU  - G. G. Sharafutdinova
TI  - An operator method for studying the Euler problem on types of the loss of stability for a~pivoted rod under buckling load
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 86
EP  - 91
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/
LA  - ru
ID  - IVM_2010_11_a7
ER  - 
%0 Journal Article
%A G. G. Sharafutdinova
%T An operator method for studying the Euler problem on types of the loss of stability for a~pivoted rod under buckling load
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 86-91
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/
%G ru
%F IVM_2010_11_a7
G. G. Sharafutdinova. An operator method for studying the Euler problem on types of the loss of stability for a~pivoted rod under buckling load. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2010_11_a7/

[1] Yasinskii F. S., Izbrannye raboty po ustoichivosti szhatykh sterzhnei, GITTL, M., 1952

[2] Panovko Ya. G., Gubanova I. I., Ustoichivost i kolebaniya uprugikh sistem: sovremennye kontseptsii, paradoksy i oshibki, Kom-Kniga, M., 2006

[3] Azbelev N. V., Makagonova M. A., Plaksina V. P., “Variatsionnyi metod resheniya zadachi Eilera ob ustoichivosti uprugogo sterzhnya”, Izv. RAEN. Differents. uravneniya, 2004, no. 8, 10–13

[4] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[5] Azbelev N. V., Kultyshev S. Yu., Tsalyuk V. Z., Funktsionalno-differentsialnye uravneniya i variatsionnye zadachi, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2006 http://www.rcd.ru

[6] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1957 | MR | Zbl

[7] Ibragimova L. S., Yumagulov M. G., “Funktsionalizatsiya parametra i ee prilozheniya v zadache o lokalnykh bifurkatsiyakh dinamicheskikh sistem”, Avtomatika i telemekhanika, 2007, no. 4, 3–12 | MR | Zbl