Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_11_a6, author = {A. Yu. Trynin}, title = {The divergence of {Lagrange} interpolation processes in eigenfunctions of the {Sturm--Liouville} problem}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {74--85}, publisher = {mathdoc}, number = {11}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a6/} }
TY - JOUR AU - A. Yu. Trynin TI - The divergence of Lagrange interpolation processes in eigenfunctions of the Sturm--Liouville problem JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 74 EP - 85 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_11_a6/ LA - ru ID - IVM_2010_11_a6 ER -
A. Yu. Trynin. The divergence of Lagrange interpolation processes in eigenfunctions of the Sturm--Liouville problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 74-85. http://geodesic.mathdoc.fr/item/IVM_2010_11_a6/
[1] Zhuk A. S., Zhuk V. V., “Nekotorye ortogonalnosti v teorii priblizheniya”, Zap. nauchn. semin. POMI, 314, 2004, 83–123 | MR | Zbl
[2] Schmeisser G., Stenger F., “Sinc approximation with a Gaussian multiplier”, Sampl. Theory Signal Image and Process, 6:2 (2007), 199–221 | MR | Zbl
[3] Ignatović A., “Local approximations based on orthogonal differential operators”, J. Fourier Anal. Appl., 13:3 (2007), 309–330 | DOI | MR
[4] Gelb A., “Reconstruction of piecewise smooth functions from non-uniform grid point data”, J. Sci. Comput., 30:3 (2007), 409–440 | DOI | MR | Zbl
[5] Annaby M. H., Tharwat M. M., “Sinc-based computations of eigenvalues of Dirac systems”, BIT, 47:4 (2007), 699–713 | DOI | MR | Zbl
[6] Stenger F., Numerical methods based on sinc and analytic functions, Springer-Verlag, N.Y., 1993 | MR | Zbl
[7] Higgins J. R., “Five short stories about the cardinal series”, Bull. AMS. New Ser., 12:1 (1985), 45–89 | DOI | MR | Zbl
[8] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, UMN, 53:6 (1998), 53–128 | MR | Zbl
[9] Novikov I. Ya., Stechkin S. B., “Osnovnye konstruktsii vspleskov”, Fundament. i prikl. matem., 3:4 (1997), 999–1028 | MR | Zbl
[10] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001
[11] Butzer P. L., Hinsen G., “Reconstruction of bounded signals from pseudo-periodic, irregularly spaced samples”, Signal Process., 17 (1989), 1–17 | DOI | MR
[12] Higgins J. R., “Sampling theorems and contour integral method”, Appl. Anal., 41:1–4 (1991), 155–169 | DOI | MR | Zbl
[13] Hinsen G., “Irregular sampling of bandlimited $L^p$-functions”, J. Approx. Theory, 72:3 (1993), 346–364 | DOI | MR | Zbl
[14] Kramer H. P., “A generalized sampling theorem”, J. Math. Phys., 38 (1959), 68–72 | MR | Zbl
[15] Zayed A. I., Hinsen G., Butzer P. L., “On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm–Liouville problems”, SIAM J. Appl. Math., 50:3 (1990), 893–909 | DOI | MR | Zbl
[16] McArthur K. M., Bowers K. L., Lund J., “The sinc method in multiple space dimensions: model problems”, Numer. Math., 56:8 (1990), 789–816 | DOI | MR | Zbl
[17] Ebata M., Eguchi M., Koizumi Sh., Kumahara K., “On sampling formulas on symmetric spaces”, J. Fourier Anal. Appl., 12:1 (2006), 1–15 | DOI | MR | Zbl
[18] Boumenir A., “Computing eigenvalues of Lommel-type equations by the sampling method”, J. Comput. Anal. Appl., 2:4 (2000), 323–332 | MR | Zbl
[19] Mohsen A., El-Gamel M., “A sinc-collocation method for the linear Fredholm integro-differential equations”, Z. Angew. Math. Phys., 58:3 (2007), 380–390 | DOI | MR | Zbl
[20] Hackbusch W., Khoromskij B. N., “Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions”, Computing, 76:3–4 (2006), 177–202 | DOI | MR | Zbl
[21] El-Gamel M., Cannon J. R., “On the solution a of second order singulary-perturbed bondary value problem by the sinc-Galerkin method”, Z. Angew. Math. Phys., 56:1 (2005), 45–58 | DOI | MR | Zbl
[22] Walter G. G., Shen X., “Wavelets based on prolate spheroidal wave functions”, J. Fourier Anal. Appl., 10:1 (2004), 1–26 | DOI | MR | Zbl
[23] Sun Q., “Frames in spaces with finite rate of innovation”, Adv. Comput. Math., 28:4 (2008), 301–329 | DOI | MR | Zbl
[24] Li H. A., Fang G. S., “Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions”, J. Beijing Norm. Univ. Nat. Sci., 40:3 (2004), 315–319 | MR | Zbl
[25] Butzer P. L., Stens R. L., “A modification of the Whittaker–Kotelnikov–Shannon sampling series”, Aequationes Math., 28:3 (1985), 305–311 | DOI | MR | Zbl
[26] Butzer P. L., Higgins J. R., Stens R. L., “Classical and approximate sampling theorems; studies in $L^p(\mathbf R)$ and the uniform norm”, J. Approx. Theory, 137:2 (2005), 250–263 | DOI | MR | Zbl
[27] Trynin A. Yu., “Ob approksimatsii analiticheskikh funktsii operatorami Lagranzha–Shturma–Liuvillya”, Sovremen. probl. teorii funkts. i ikh prilozh., Tez. dokl. 10-i Saratovskoi zimnei shkoly 27 yanvarya – 2 fevralya 2000 goda, Izd-vo Saratovsk. un-ta, Saratov, 2000, 140–141
[28] Trynin A. Yu., “Ob otsenke approksimatsii analiticheskikh funktsii interpolyatsionnym operatorom po sinkam”, Matematika. Mekhanika, Izd-vo Saratovsk. un-ta, Saratov, 2005, 124–127
[29] Berrut Jean-Paul, “A formula for the error of finite sinc-interpolation over a finite interval”, Numer. Algorithms, 45:1–4 (2007), 369–374 | DOI | MR | Zbl
[30] Trynin A. Yu., “Otsenki funktsii Lebega i formula Nevai dlya sinc-priblizhenii nepreryvnykh funktsii na otrezke”, Sib. matem. zhurn., 48:5 (2007), 1155–1166 | MR | Zbl
[31] Trynin A. Yu., “Kriterii potochechnoi i ravnomernoi skhodimosti sink-priblizhenii nepreryvnykh funktsii na otrezke”, Matem. sb., 198:10 (2007), 141–158 | MR | Zbl
[32] Sklyarov V. P., “On the best uniform sinc-approximation on a finite interval”, East J. Approx., 14:2 (2008), 29–38 | MR
[33] Trynin A. Yu., “Kriterii ravnomernoi skhodimosti sinc-priblizhenii na otrezke”, Izv. vuzov. Matematika, 2008, no. 6, 66–78 | MR | Zbl
[34] Trynin A. Yu., Sklyarov V. P., “Error of sinc approximation of analytic functions on an interval”, Sampl. Theory Signal Image and Process, 7:3 (2008), 263–270 | MR | Zbl
[35] Natanson G. I., “Ob odnom interpolyatsionnom protsesse”, Uchen. zap. Leningradsk. ped. in-ta, 166, 1958, 213–219 | MR
[36] Trynin A. Yu., O ravnomernoi skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, VINITI No 1763-B91, Saratovskii un-t, 1991
[37] Trynin A. Yu., Ob odnom priznake skhodimosti interpolyatsionnykh protsessov Lagranzha–Shturma–Liuvillya, VINITI No 2201-B91, Saratovskii un-t, 1991
[38] Trynin A. Yu., “Ob otsutstvii ustoichivosti interpolirovaniya po sobstvennym funktsiyam zadachi Shturma–Liuvillya”, Izv. vuzov. Matematika, 2000, no. 9, 60–73 | MR | Zbl
[39] Grünwald G., “Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome stetiger Funktionen”, Ann. Math., 37:2 (1936), 908–918 | DOI | MR | Zbl
[40] Marcinkiewicz J., “Sur la divergence des pôlynomes d'interpolation”, Acta Litterarum ac Scientiarum, 8 (1937), 131–135 | Zbl
[41] Privalov A. A., “O raskhodimosti interpolyatsionnykh protsessov Lagranzha po uzlam Yakobi na mnozhestve polozhitelnoi mery”, Sib. matem. zhurn., 17:4 (1976), 837–859 | MR | Zbl
[42] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v. 1, In. lit., M., 1953 | MR