Positiveness conditions for the Cauchy function for differential equations with distributed delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain unimprovable sufficient conditions for the positivity of the Cauchy function for differential equation with distributed delay. Based on these conditions, we study some asymptotic properties of solutions of the Hutchinson–Wright equation, the Lasota–Wazevska equation, and the Nicholson equation.
Keywords: functional-differential equation, positivity of the Cauchy function, Hutchinson–Wright equation, Nicholson equation.
Mots-clés : Lasota–Wazevska equation
@article{IVM_2010_11_a4,
     author = {T. L. Sabatulina},
     title = {Positiveness conditions for the {Cauchy} function for differential equations with distributed delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--62},
     publisher = {mathdoc},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a4/}
}
TY  - JOUR
AU  - T. L. Sabatulina
TI  - Positiveness conditions for the Cauchy function for differential equations with distributed delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 50
EP  - 62
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_11_a4/
LA  - ru
ID  - IVM_2010_11_a4
ER  - 
%0 Journal Article
%A T. L. Sabatulina
%T Positiveness conditions for the Cauchy function for differential equations with distributed delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 50-62
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_11_a4/
%G ru
%F IVM_2010_11_a4
T. L. Sabatulina. Positiveness conditions for the Cauchy function for differential equations with distributed delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 50-62. http://geodesic.mathdoc.fr/item/IVM_2010_11_a4/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[2] Azbelev N. V., Simonov P. M., Ustoichivost reshenii uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001

[3] Berezansky L., Braverman E., Domoshnitsky A., “First order functional differential equations: nonoscillation and positivity of Green's functions”, Functional differential equation, 1–2 (2008), 57–94 | MR | Zbl

[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[5] Koplatadze R. G., Chanturiya T. A., “O koleblyuschikhsya i monotonnykh resheniyakh differentsialnogo uravneniya pervogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 18:8 (1982), 1463–1465 | MR | Zbl

[6] Gusarenko S. A., Domoshnitskii A. I., “Ob asimptoticheskikh i ostsillyatsionnykh svoistvakh lineinykh skalyarnykh funktsionalno-differentsialnykh uravnenii pervogo poryadka”, Differents. uravneniya, 25:12 (1989), 2090–2103 | MR | Zbl

[7] Györi I., Ladas G., Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford University Press, New York, 1991 | MR | Zbl

[8] Erbe L. H., Kong Q., Zhang B., Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995 | MR

[9] Berezansky L., Braverman E., “On non-oscillation of a scalar delay differential equation”, Dynam. Systems Appl., 6 (1997), 567–580 | MR | Zbl

[10] Agarwal R. P., Domoshnitsky A., “Nonoscillation of the first order differential equations with unbounded memory for stabilization by control signal”, Appl. Math. Comput., 173 (2006), 177–195 | DOI | MR | Zbl

[11] Morgenthal K., “Über das asymptotische der Lösungen einer linearen Differentialgleichung mit Nachwirkung”, Z. Anal. Anwendungen, 4:2 (1985), 107–124 | MR | Zbl

[12] Sugie J., “Ostillating solutions of scalar delay-differential equations with state dependence”, Applicable Analysis, 27 (1988), 217–227 | DOI | MR | Zbl

[13] Berezansky L., Braverman E., “On oscillation of equations with distributed delay”, Z. Anal. Anwendungen, 20:2 (2001), 567–580 | MR

[14] Malygina V. V., “Positiveness of the Cauchy function and stability of a linear differential equation with distributed delay”, Memoirs on Diff. Equations and Math. Physics, 41 (2007), 87–96 | MR | Zbl

[15] Malygina V. V., Sabatulina T. L., “Znakoopredelennost reshenii i ustoichivost lineinykh differentsialnykh uravnenii s peremennym raspredelennym zapazdyvaniem”, Izv. vuzov. Matematika, 2008, no. 8, 73–77 | MR | Zbl

[16] Sabatulina T. L., “On the positiveness of the Cauchy function of integro-differential equations with bounded aftereffect”, Functional differential equation, 3–4 (2008), 273–282 | MR | Zbl

[17] Berezansky L., Braverman E., “Linearized oscillation theory for a nonlinear equation with a distributed delay”, Mathematical and Computer Modelling, 48 (2008), 287–304 | DOI | MR | Zbl