Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2010_11_a4, author = {T. L. Sabatulina}, title = {Positiveness conditions for the {Cauchy} function for differential equations with distributed delay}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {50--62}, publisher = {mathdoc}, number = {11}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a4/} }
TY - JOUR AU - T. L. Sabatulina TI - Positiveness conditions for the Cauchy function for differential equations with distributed delay JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 50 EP - 62 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_11_a4/ LA - ru ID - IVM_2010_11_a4 ER -
T. L. Sabatulina. Positiveness conditions for the Cauchy function for differential equations with distributed delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 50-62. http://geodesic.mathdoc.fr/item/IVM_2010_11_a4/
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl
[2] Azbelev N. V., Simonov P. M., Ustoichivost reshenii uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001
[3] Berezansky L., Braverman E., Domoshnitsky A., “First order functional differential equations: nonoscillation and positivity of Green's functions”, Functional differential equation, 1–2 (2008), 57–94 | MR | Zbl
[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl
[5] Koplatadze R. G., Chanturiya T. A., “O koleblyuschikhsya i monotonnykh resheniyakh differentsialnogo uravneniya pervogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 18:8 (1982), 1463–1465 | MR | Zbl
[6] Gusarenko S. A., Domoshnitskii A. I., “Ob asimptoticheskikh i ostsillyatsionnykh svoistvakh lineinykh skalyarnykh funktsionalno-differentsialnykh uravnenii pervogo poryadka”, Differents. uravneniya, 25:12 (1989), 2090–2103 | MR | Zbl
[7] Györi I., Ladas G., Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford University Press, New York, 1991 | MR | Zbl
[8] Erbe L. H., Kong Q., Zhang B., Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995 | MR
[9] Berezansky L., Braverman E., “On non-oscillation of a scalar delay differential equation”, Dynam. Systems Appl., 6 (1997), 567–580 | MR | Zbl
[10] Agarwal R. P., Domoshnitsky A., “Nonoscillation of the first order differential equations with unbounded memory for stabilization by control signal”, Appl. Math. Comput., 173 (2006), 177–195 | DOI | MR | Zbl
[11] Morgenthal K., “Über das asymptotische der Lösungen einer linearen Differentialgleichung mit Nachwirkung”, Z. Anal. Anwendungen, 4:2 (1985), 107–124 | MR | Zbl
[12] Sugie J., “Ostillating solutions of scalar delay-differential equations with state dependence”, Applicable Analysis, 27 (1988), 217–227 | DOI | MR | Zbl
[13] Berezansky L., Braverman E., “On oscillation of equations with distributed delay”, Z. Anal. Anwendungen, 20:2 (2001), 567–580 | MR
[14] Malygina V. V., “Positiveness of the Cauchy function and stability of a linear differential equation with distributed delay”, Memoirs on Diff. Equations and Math. Physics, 41 (2007), 87–96 | MR | Zbl
[15] Malygina V. V., Sabatulina T. L., “Znakoopredelennost reshenii i ustoichivost lineinykh differentsialnykh uravnenii s peremennym raspredelennym zapazdyvaniem”, Izv. vuzov. Matematika, 2008, no. 8, 73–77 | MR | Zbl
[16] Sabatulina T. L., “On the positiveness of the Cauchy function of integro-differential equations with bounded aftereffect”, Functional differential equation, 3–4 (2008), 273–282 | MR | Zbl
[17] Berezansky L., Braverman E., “Linearized oscillation theory for a nonlinear equation with a distributed delay”, Mathematical and Computer Modelling, 48 (2008), 287–304 | DOI | MR | Zbl