An optimal control problem for the Schr\"odinger equation with a~real-valued factor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 31-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an optimal control problem for the Schrödinger equation with a real-valued factor in its nonlinear part where the control function is square summable and the quality criterion is Lions' functional. First, we examine the correctness of the statement of the reduced problem and, second, we do that of the optimal control problem. We also study the differentiability of Lions' functional and obtain a necessary optimality condition in the form of a variational inequality.
Keywords: Schrödinger equation, optimal control
Mots-clés : Lions' criterion.
@article{IVM_2010_11_a2,
     author = {N. M. Mahmudov},
     title = {An optimal control problem for the {Schr\"odinger} equation with a~real-valued factor},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--40},
     publisher = {mathdoc},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a2/}
}
TY  - JOUR
AU  - N. M. Mahmudov
TI  - An optimal control problem for the Schr\"odinger equation with a~real-valued factor
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 31
EP  - 40
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_11_a2/
LA  - ru
ID  - IVM_2010_11_a2
ER  - 
%0 Journal Article
%A N. M. Mahmudov
%T An optimal control problem for the Schr\"odinger equation with a~real-valued factor
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 31-40
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_11_a2/
%G ru
%F IVM_2010_11_a2
N. M. Mahmudov. An optimal control problem for the Schr\"odinger equation with a~real-valued factor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 31-40. http://geodesic.mathdoc.fr/item/IVM_2010_11_a2/

[1] Bukkel V., Teoriya sverkhprovodimosti. Osnovy i prilozheniya, Mir, M., 1975

[2] Vorontsov M. A., Shmalgauzen V. N., Printsipy adaptivnoi optiki, Nauka, M., 1985

[3] Iskenderov A. D., Yagubov G. Ya., “Variatsionnyi metod resheniya obratnoi zadachi ob opredelenii kvantovomekhanicheskogo potentsiala”, DAN SSSR, 303:5 (1988), 1044–1048 | MR

[4] Iskenderov A. D., Yagubov G. Ya., “Optimalnoe upravlenie nelineinymi kvantovomekhanicheskimi sistemami”, Avtomatika i telemekhanika, 1989, no. 12, 27–38 | MR | Zbl

[5] Yagubov G. Ya., Optimalnoe upravlenie koeffitsientom kvazilineinogo uravneniya Shredingera, Diss. $\dots$ dokt. fiz.-matem. nauk, Baku, 1993

[6] Yagubov G. Ya., Musaeva M. A., “O variatsionnom metode resheniya mnogomernoi obratnoi zadachi dlya nelineinogo nestatsionarnogo uravneniya Shredingera”, Izv. AN Azerb. Ser. fiz.-tekh. i matem. nauk, 15:5–6 (1994), 58–61

[7] Yagubov G. Ya., Musaeva M. A., “Ob odnoi zadache identifikatsii dlya nelineinogo uravneniya Shredingera”, Differents. uravneniya, 33:12 (1997), 1691–1698 | MR | Zbl

[8] Iskenderov A. D., “Raznostnyi metod resheniya zadachi optimalnogo upravleniya koeffitsientom kvazilineinogo uravneniya Shredingera s integralnym kriteriem kachestva po granitse oblasti”, Problemy matem. model. i optimalnogo upravleniya, Baku, 2001, 37–48

[9] Iskenderov A. D., “Opredelenie potentsiala v nestatsionarnom uravnenii Shredingera”, Problemy matem. model. i optimalnogo upravleniya, Baku, 2001, 6–36 | Zbl

[10] Baudouin L., Kavian O., Puel J.-P., “Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control”, J. Diff. Equ., 216:1 (2005), 188–222 | DOI | MR | Zbl

[11] Cances E., Le Bris C., Pilot M., “Contrôle optimal bilinéaire d'une équation de Schrödinger”, C. R. Acad. Sci. Paris Sér. I, 330:7 (2000), 567–571 | MR | Zbl

[12] Iskenderov A. A., “Identification problem for the time-dependent Schrödinger type equation”, Proc. of the Lankaran State University, 2005, 31–53 | MR

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[14] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1983 | MR

[15] Lions Zh.-L., Madzhens E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[16] Nasibov Sh. M., “Ob odnom nelineinom uravnenii tipa Shredingera”, Differents. uravneniya, 16:4 (1980), 660–670 | MR | Zbl

[17] Yakubov S. Ya., “Ravnomernaya korrektnost zadachi Koshi dlya evolyutsionnykh uravnenii i ikh prilozheniya”, Funkts. analiz i ego prilozh., 4:3 (1970), 86–94 | MR | Zbl

[18] Mahmudov N. M., “An optimal control problem for Schrödinger's equation with real-valued coefficient in the non-linear part of the equation”, Proc. of IMM of NAS of Azerb., 29, 2008, 239–246 | MR

[19] Goebel M., “On existence of optimal control”, Math. Nachr., 93 (1979), 67–73 | DOI | MR | Zbl

[20] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[21] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR

[22] Vasilev V. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981 | MR