Stability of a linear nonautonomous difference equation with bounded delays
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 22-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain exact sufficient stability conditions for a linear nonautonomous difference equation with several bounded delays. These conditions are written in terms of parameters of the initial equation.
Keywords: difference equations with delays, stability conditions.
@article{IVM_2010_11_a1,
     author = {A. Yu. Kulikov},
     title = {Stability of a linear nonautonomous difference equation with bounded delays},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--30},
     publisher = {mathdoc},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_11_a1/}
}
TY  - JOUR
AU  - A. Yu. Kulikov
TI  - Stability of a linear nonautonomous difference equation with bounded delays
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 22
EP  - 30
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_11_a1/
LA  - ru
ID  - IVM_2010_11_a1
ER  - 
%0 Journal Article
%A A. Yu. Kulikov
%T Stability of a linear nonautonomous difference equation with bounded delays
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 22-30
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_11_a1/
%G ru
%F IVM_2010_11_a1
A. Yu. Kulikov. Stability of a linear nonautonomous difference equation with bounded delays. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2010), pp. 22-30. http://geodesic.mathdoc.fr/item/IVM_2010_11_a1/

[1] Yu J.-S., “Asymptotic stability for a linear difference equation with variable delay”, Comput. Math. Appl., 36:10–12 (1998), 203–210 | MR | Zbl

[2] Malygina V. V., Kulikov A. Y., “On precision of constants in some theorems on stability of difference equations”, Funct. Differ. Equ., 15:3–4 (2008), 239–248 | MR | Zbl

[3] Berezansky L., Braverman E., “On existence of positive solutions for linear difference equations with several delays”, Adv. Dyn. Syst. Appl., 1:1 (2006), 29–47 | MR | Zbl

[4] Kulikov A. Yu., Malygina V. V., “Ob ustoichivosti neavtonomnykh raznostnykh uravnenii s neskolkimi zapazdyvaniyami”, Izv. vuzov. Matematika, 2008, no. 3, 18–26 | MR | Zbl

[5] Erbe L. H., Xia H., “Global stability of a linear nonautonomous delay difference equation”, J. Differ. Equ. Appl., 1:2 (1995), 151–161 | DOI | MR | Zbl

[6] Zhang B. G., Tian C. J., Wong P. J. Y., “Global attractivity of difference equation with variable delay”, Dynam. Contin. Discrete Impuls. Syst., 6:3 (1999), 307–317 | MR | Zbl

[7] Berezansky L., Braverman E., “On Bohl–Perron type theorems for difference equations”, Funct. Differ. Equ., 11:1–2 (2004), 19–29 | MR

[8] Kovácsvölgyi I., “The asymptotic stability of difference equations”, Appl. Math. Lett., 13:1 (2000), 1–6 | DOI | MR | Zbl

[9] Yu J.-S., Cheng S.-S., “A stability criterion for a neutral difference equation with delay”, Appl. Math. Lett., 7:6 (1994), 75–80 | DOI | MR | Zbl