The constructive investigation of boundary-value problems with approximate satisfaction of boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 82-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear boundary value problems for functional differential equations are considered when the number of boundary conditions is greater than the dimension of the system in the case of approximate fulfilment of boundary conditions. The approach is based on theorems whose conditions allow one to check up them by special reliable computing procedures.
Keywords: functional differential equations, boundary value problems, constructive methods, reliable computing.
@article{IVM_2010_10_a9,
     author = {V. P. Maksimov and A. L. Chadov},
     title = {The constructive investigation of boundary-value problems with approximate satisfaction of boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--86},
     publisher = {mathdoc},
     number = {10},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a9/}
}
TY  - JOUR
AU  - V. P. Maksimov
AU  - A. L. Chadov
TI  - The constructive investigation of boundary-value problems with approximate satisfaction of boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 82
EP  - 86
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_10_a9/
LA  - ru
ID  - IVM_2010_10_a9
ER  - 
%0 Journal Article
%A V. P. Maksimov
%A A. L. Chadov
%T The constructive investigation of boundary-value problems with approximate satisfaction of boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 82-86
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_10_a9/
%G ru
%F IVM_2010_10_a9
V. P. Maksimov; A. L. Chadov. The constructive investigation of boundary-value problems with approximate satisfaction of boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 82-86. http://geodesic.mathdoc.fr/item/IVM_2010_10_a9/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii, In-t kompyut. issled., M., 2002

[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Introduction to the theory of functional differential equations: Methods and applications, Hindawi Publishing Corporation, NY, 2007 | MR | Zbl

[3] Kaucher E. W., Miranker W. L., Self-validating numerics for functional space problems, Academic Press, NY | Zbl

[4] Maksimov V. P., Rumyantsev A. N., “Kraevye zadachi i zadachi impulsnogo upravleniya v ekonomicheskoi dinamike. Konstruktivnoe issledovanie”, Izv. vuzov. Matematika, 1993, no. 5, 56–71 | MR | Zbl

[5] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[6] Anokhin A. V., “O lineinykh impulsnykh sistemakh dlya funktsionalno-differentsialnykh uravnenii”, DAN SSSR, 286:5 (1986), 1037–1040 | MR | Zbl

[7] Chernikov S. N., Lineinye neravenstva, Nauka, M., 1968 | MR | Zbl