Explicit form of characteristic numbers of a periodic problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 44-50
Cet article a éte moissonné depuis la source Math-Net.Ru
A periodic problem for a linear differential equation of the second order is reduced to a periodic problem for a differential equation of the first order, but with deviation argument. We indicate the cases when the characteristic numbers are determined explicitly. This paper is the continuation of investigations commenced in “Differents. Uravneniya”, {\textbf44} (4) (2008).
Keywords:
differential equations, periodic problem, characteristic numbers.
Mots-clés : nonzero solutions
Mots-clés : nonzero solutions
@article{IVM_2010_10_a3,
author = {V. S. Mokeichev},
title = {Explicit form of characteristic numbers of a~periodic problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {44--50},
year = {2010},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a3/}
}
V. S. Mokeichev. Explicit form of characteristic numbers of a periodic problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 44-50. http://geodesic.mathdoc.fr/item/IVM_2010_10_a3/
[1] Mokeichev V. S., Differentsialnye uravneniya s otklonyayuschimisya argumentami, Izd-vo Kazansk. un-ta, Kazan, 1985
[2] Mokeichev V. S., “Yavnyi vid i kratnost kharakteristicheskikh chisel periodicheskikh zadach dlya differentsialnykh uravnenii”, Differents. uravneniya, 44:3 (2008), 455–466 | MR