Direct sums of injective semimodules and direct products of projective semimodules over semirings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, in the case of injectivity of direct sum or projectivity of direct product of a family of semimodules over a semiring $S$, a subfamily consisting of all semimodules of a family which are not modules is either finite or has a cardinality strictly lesser than a cardinality of a semiring $S$. As a consequence we obtain semiring analogs of known characterizations of classical semisimple, quasi-Frobenius, and one-side Noetherian rings.
Keywords: semiring, injective semimodule, projective semimodule.
@article{IVM_2010_10_a2,
     author = {S. N. Ilyin},
     title = {Direct sums of injective semimodules and direct products of projective semimodules over semirings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--43},
     publisher = {mathdoc},
     number = {10},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a2/}
}
TY  - JOUR
AU  - S. N. Ilyin
TI  - Direct sums of injective semimodules and direct products of projective semimodules over semirings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 31
EP  - 43
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_10_a2/
LA  - ru
ID  - IVM_2010_10_a2
ER  - 
%0 Journal Article
%A S. N. Ilyin
%T Direct sums of injective semimodules and direct products of projective semimodules over semirings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 31-43
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_10_a2/
%G ru
%F IVM_2010_10_a2
S. N. Ilyin. Direct sums of injective semimodules and direct products of projective semimodules over semirings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 31-43. http://geodesic.mathdoc.fr/item/IVM_2010_10_a2/

[1] Golan J. S., Semirings and their applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 1999 | MR

[2] Kash F., Moduli i koltsa, Mir, M., 1981 | MR

[3] Feis K., Algebra: koltsa, moduli i kategorii, v. 2, Mir, M., 1979 | MR

[4] Skornyakov L. A., Elementy obschei algebry, Nauka, M., 1983 | MR | Zbl

[5] Ilin S. N., “Polukoltsa, nad kotorymi vse polumoduli in'ektivny (proektivny)”, Matem. vestn. pedvuzov i un-tov Volgo-Vyatsk. regiona, 2006, no. 8, 50–53