Direct sums of injective semimodules and direct products of projective semimodules over semirings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 31-43
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that, in the case of injectivity of direct sum or projectivity of direct product of a family of semimodules over a semiring $S$, a subfamily consisting of all semimodules of a family which are not modules is either finite or has a cardinality strictly lesser than a cardinality of a semiring $S$. As a consequence we obtain semiring analogs of known characterizations of classical semisimple, quasi-Frobenius, and one-side Noetherian rings.
Keywords:
semiring, injective semimodule, projective semimodule.
@article{IVM_2010_10_a2,
author = {S. N. Ilyin},
title = {Direct sums of injective semimodules and direct products of projective semimodules over semirings},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--43},
publisher = {mathdoc},
number = {10},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a2/}
}
TY - JOUR AU - S. N. Ilyin TI - Direct sums of injective semimodules and direct products of projective semimodules over semirings JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2010 SP - 31 EP - 43 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2010_10_a2/ LA - ru ID - IVM_2010_10_a2 ER -
S. N. Ilyin. Direct sums of injective semimodules and direct products of projective semimodules over semirings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 31-43. http://geodesic.mathdoc.fr/item/IVM_2010_10_a2/