Noncommutative integration for traces with values in Kantorovich--Pinsker spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 18-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider traces on von Neumann algebras with values in complex Kantorovich–Pinsker spaces. We establish the connection between the convergence with respect to the trace and the convergence locally in measure in the algebra $S(M)$ of measurable operators affiliated with $M$. We define the $(bo)$-complete lattice-normed spaces of integrable operators in $S(M)$ and prove that they are decomposable if the trace possesses the Maharam property.
Keywords: von Neumann algebra, measurable operator, convergence locally in measure, vector-valued trace, Banach–Kantorovich space.
@article{IVM_2010_10_a1,
     author = {B. S. Zakirov and V. I. Chilin},
     title = {Noncommutative integration for traces with values in {Kantorovich--Pinsker} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--30},
     publisher = {mathdoc},
     number = {10},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2010_10_a1/}
}
TY  - JOUR
AU  - B. S. Zakirov
AU  - V. I. Chilin
TI  - Noncommutative integration for traces with values in Kantorovich--Pinsker spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2010
SP  - 18
EP  - 30
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2010_10_a1/
LA  - ru
ID  - IVM_2010_10_a1
ER  - 
%0 Journal Article
%A B. S. Zakirov
%A V. I. Chilin
%T Noncommutative integration for traces with values in Kantorovich--Pinsker spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2010
%P 18-30
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2010_10_a1/
%G ru
%F IVM_2010_10_a1
B. S. Zakirov; V. I. Chilin. Noncommutative integration for traces with values in Kantorovich--Pinsker spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2010), pp. 18-30. http://geodesic.mathdoc.fr/item/IVM_2010_10_a1/

[1] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math. (2), 57 (1953), 401–457 | DOI | MR | Zbl

[2] Nelson E., “Notes on non commutative integration”, J. Funct. Anal., 15 (1974), 103–116 | DOI | MR | Zbl

[3] Yeadon F. J., “Non-commutative $L^p$-spaces”, Math. Proc. Camb. Phil. Soc., 77 (1975), 91–102 | DOI | MR | Zbl

[4] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacif. J. Math., 123 (1986), 269–300 | MR | Zbl

[5] Pisier G., Xu Q., “Non-commutative $L^p$-spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1459–1517 | MR | Zbl

[6] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003 | MR

[7] Ganiev I. G., Chilin V. I., “Izmerimye rassloeniya nekommutativnykh $L_p$-prostranstv, assotsiirovannykh s tsentroznachnym sledom”, Matem. tr., 4:2 (2001), 27–41 | MR | Zbl

[8] Chilin V. I., Katz A. A., “On abstract characterization of non-commutative $L^p$-spaces associated with center-valued trace”, Methods Funct. Anal. Topol., 11:4 (2005), 346–355 | MR | Zbl

[9] Stratila S., Zsido L., Lectures on von Neumann algebras, Editura Academici Republcii Socialiste Romania, Bucuresti, 1975 | MR | Zbl

[10] Takesaki M., Theory of operator algebras, v. I, Springer, New York–Heidelberg–Berlin, 1979 | MR

[11] Muratov M. A., Chilin V. I., Algebry izmerimykh i lokalno izmerimykh operatorov, Pratsi In-ty Matem. NAN Ukraïni, Kiïv, 2007 | Zbl

[12] Yeadon F. J., “Convergence of measurable operators”, Proc. Camb. Phil. Soc., 74 (1973), 257–268 | DOI | MR | Zbl

[13] Tikhonov O. E., “Nepreryvnost operatornykh funktsii v topologiyakh, svyazannykh so sledom na algebre fon Neimana”, Izv. vuzov. Matematika, 1987, no. 1, 77–79 | MR | Zbl

[14] Vladimirov D. A., Bulevy algebry, Nauka, M., 1969 | MR

[15] Akemann C. A., Andersen T., Pedersen G. K., “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl

[16] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl