Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_9_a7, author = {K. B. Igudesman}, title = {Top addresses for a~certain family of iterated function system on a~segment}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {75--81}, publisher = {mathdoc}, number = {9}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a7/} }
K. B. Igudesman. Top addresses for a~certain family of iterated function system on a~segment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 75-81. http://geodesic.mathdoc.fr/item/IVM_2009_9_a7/
[1] Hutchinson J., “Fractals and self similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[2] Barnsley M. F., “Theory and applications of fractal tops”, Fractals in Engineering: New Trends in Theory and Appl., Springer-Verlag, London, 2005, 3–20
[3] Rényi A., “Representations for real numbers and their ergodic properties”, Acta Math. Hung., 8:3–4 (1957), 477–493 | MR | Zbl
[4] Parry W., “On the $\beta$-expansions of real numbers”, Acta Math. Hung., 11:3–4 (1960), 401–416 | MR | Zbl
[5] Erdős P., “On a family of symmetric bernoulli convolutions”, Amer. J. Math., 61 (1939), 974–976 | DOI | MR | Zbl
[6] Peres Y., Schlag W., Solomyak B., “Sixty years of Bernoulli convolutions”, Fractal geometry and stochastics, II, Proc. of the 2nd conference, Greifswald, 2000, 39–65 | MR | Zbl
[7] Sidorov N., “Almost every number has a continuum of $\beta$-expansions”, Amer. Math. Monthly, 110:9 (2003), 838–842 | DOI | MR | Zbl
[8] Barnsley M. F., Superfractals, Cambridge University Press, Cambridge, 2006, 464 pp. | Zbl