The relationship between the Einstein and Yang--Mills equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that special requirements to Yang–Mills equations on a 4-dimensional conformally connected manifold allow one to reduce them to a system of Einstein equations and additional ones that bind components of the energy-impulse tensor. We propose an algorithm that gives conditions for the embedding of the metric of the gravitational field into a special (uncharged) Yang–Mills conformally connected manifold. As an application of the algorithm, we prove that the metric of any Einstein space and the Robertson–Walker metric are embeddable into the specified manifold.
Keywords: curvature of the connection, Robertson–Walker metric, Hodge operator, energy-impulse tensor, Bianchi identities, Einstein equations, Yang–Mills equations, 4-dimensional conformally connected manifold.
@article{IVM_2009_9_a6,
     author = {L. N. Krivonosov and V. A. Luk'yanov},
     title = {The relationship between the {Einstein} and {Yang--Mills} equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--74},
     publisher = {mathdoc},
     number = {9},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a6/}
}
TY  - JOUR
AU  - L. N. Krivonosov
AU  - V. A. Luk'yanov
TI  - The relationship between the Einstein and Yang--Mills equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 69
EP  - 74
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_9_a6/
LA  - ru
ID  - IVM_2009_9_a6
ER  - 
%0 Journal Article
%A L. N. Krivonosov
%A V. A. Luk'yanov
%T The relationship between the Einstein and Yang--Mills equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 69-74
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_9_a6/
%G ru
%F IVM_2009_9_a6
L. N. Krivonosov; V. A. Luk'yanov. The relationship between the Einstein and Yang--Mills equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 69-74. http://geodesic.mathdoc.fr/item/IVM_2009_9_a6/

[1] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Kazansk. un-t, Kazan, 1962, 210 pp.

[2] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973, 504 pp.

[3] Berke U., Prostranstvo-vremya, geometriya, kosmologiya, Mir, M., 1985, 412 pp. | MR