Some properties of graphs of closed operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 53-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study some properties of graphs of closed operators in Hilbert spaces. We construct representations of von Neumann algebras induced by graphs of closed operators. We describe some classes of closed operators in terms of their characteristic matrices and study some properties of operations on graphs of closed operators.
Keywords: graph, closed operator, orthoprojector, characteristic matrix, representation of von Neumann algebras.
@article{IVM_2009_9_a5,
     author = {M. R. Timirshin},
     title = {Some properties of graphs of closed operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--68},
     publisher = {mathdoc},
     number = {9},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a5/}
}
TY  - JOUR
AU  - M. R. Timirshin
TI  - Some properties of graphs of closed operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 53
EP  - 68
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_9_a5/
LA  - ru
ID  - IVM_2009_9_a5
ER  - 
%0 Journal Article
%A M. R. Timirshin
%T Some properties of graphs of closed operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 53-68
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_9_a5/
%G ru
%F IVM_2009_9_a5
M. R. Timirshin. Some properties of graphs of closed operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 53-68. http://geodesic.mathdoc.fr/item/IVM_2009_9_a5/

[1] Von Neumann J., “Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren”, Math. Ann., 102 (1929), 370–427 | MR | Zbl

[2] Stone M. H., “On unbounded operators in Hilbert space”, J. Ind. Math. Soc., 15 (1951), 155–192

[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 739 pp. | Zbl

[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. I. Funktsionalnyi analiz, Mir, M., 1977, 360 pp.

[5] Dye H. A., “On the geometry of projections in certain operator algebras”, Ann. of Math., 61:1 (1955), 73–89 | DOI | MR | Zbl

[6] Lugovaya G. D., Sherstnev A. N., “On the extension problem for unbounded measures on projections”, Math. Slovaca, 50:4 (2000), 473–481 | MR | Zbl

[7] Nassbaum A. E., “Reduction theory for unbounded closed operators in Hilbert space”, Duke Math. J., 31:1 (1964), 33–44 | DOI | MR

[8] Lennon M. J. J., “On sums and products of unbounded operators in Hilbert space”, Trans. Amer. Math. Soc., 198 (1974), 273–285 | DOI | MR | Zbl

[9] Manuilov V. M., “Invariant pary pochti kommutiruyuschikh neogranichennykh operatorov”, Funkts. analiz i ego prilozh., 32:4 (1998), 88–91 | MR | Zbl

[10] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Izd-vo “Faktorial”, M., 1997, 336 pp.

[11] Kaufman W. E., “Representing a closed operator as a quotient of continuous operators”, Proc. Amer. Math. Soc., 72:3 (1978), 531–534 | DOI | MR | Zbl

[12] Fillmore P. A., Williams J. P., “On operator ranges”, Advance in Math., 7 (1971), 254–281 | DOI | MR | Zbl

[13] Hassi S., Sebestyén Z., De Snoo H. S. V., Szafraniec F. H., “A canonical decomposition for linear operators and linear relations”, Acta Math. Hungar., 115:4 (2007), 281–307 | DOI | MR | Zbl

[14] Buckholtz D., “Inverting the difference of Hilbert space projections”, Amer. Math. Monthly, 104:1 (1997), 60–61 | DOI | MR | Zbl

[15] Chung K. Y., “Subspaces and graphs”, Proc. Amer. Math. Soc., 119:1 (1993), 141–146 | DOI | MR | Zbl

[16] Calkin J. W., “Two-sided ideals and congruences in ring of bounded operators in Hilbert space”, Ann. of Math., 42:4 (1941), 839–873 | DOI | MR | Zbl

[17] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, V. I, Academic Press, London, 1983, 398 pp. | Zbl