Error estimation of approximate solutions to one inverse problem for a~parabolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 46-52
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to solving the inverse boundary problem of the heat diagnostics by the projective regularization method. We obtain exact with respect to the order error estimates of the corresponding approximate solution.
Keywords:
Hilbert space, Banach space, regularization of operator equations, inverse problem.
@article{IVM_2009_9_a4,
author = {V. P. Tanana and N. Yu. Kolesnikova},
title = {Error estimation of approximate solutions to one inverse problem for a~parabolic equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {46--52},
publisher = {mathdoc},
number = {9},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/}
}
TY - JOUR AU - V. P. Tanana AU - N. Yu. Kolesnikova TI - Error estimation of approximate solutions to one inverse problem for a~parabolic equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 46 EP - 52 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/ LA - ru ID - IVM_2009_9_a4 ER -
%0 Journal Article %A V. P. Tanana %A N. Yu. Kolesnikova %T Error estimation of approximate solutions to one inverse problem for a~parabolic equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 46-52 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/ %G ru %F IVM_2009_9_a4
V. P. Tanana; N. Yu. Kolesnikova. Error estimation of approximate solutions to one inverse problem for a~parabolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 46-52. http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/