Error estimation of approximate solutions to one inverse problem for a~parabolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 46-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to solving the inverse boundary problem of the heat diagnostics by the projective regularization method. We obtain exact with respect to the order error estimates of the corresponding approximate solution.
Keywords: Hilbert space, Banach space, regularization of operator equations, inverse problem.
@article{IVM_2009_9_a4,
     author = {V. P. Tanana and N. Yu. Kolesnikova},
     title = {Error estimation of approximate solutions to one inverse problem for a~parabolic equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--52},
     publisher = {mathdoc},
     number = {9},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - N. Yu. Kolesnikova
TI  - Error estimation of approximate solutions to one inverse problem for a~parabolic equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 46
EP  - 52
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/
LA  - ru
ID  - IVM_2009_9_a4
ER  - 
%0 Journal Article
%A V. P. Tanana
%A N. Yu. Kolesnikova
%T Error estimation of approximate solutions to one inverse problem for a~parabolic equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 46-52
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/
%G ru
%F IVM_2009_9_a4
V. P. Tanana; N. Yu. Kolesnikova. Error estimation of approximate solutions to one inverse problem for a~parabolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 46-52. http://geodesic.mathdoc.fr/item/IVM_2009_9_a4/

[1] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988, 288 pp. | Zbl

[2] Tanana V. P., “Ob optimalnom po poryadku metode resheniya odnoi obratnoi zadachi dlya parabolicheskogo uravneniya”, Dokl. RAN, 407:3 (2006), 316–318 | MR

[3] Martynenko N. A., Pustylnikov L. M., Konechnye integralnye preobrazovaniya i ikh primenenie k issledovaniyu sistem s raspredelennymi parametrami, Nauka, M., 1986, 304 pp. | MR

[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp. | MR

[5] Menikhes L. D., Tanana V. P., “Konechnomernaya approksimatsiya v metode M. M. Lavrenteva”, Sib. zhurn. vychisl. matem., 1:1 (1998), 59–66 | MR

[6] Tanana V. P., Danilin A. R., “Ob optimalnosti regulyarizuyuschikh algoritmov pri reshenii nekorrektnykh zadach”, Differents. uravneniya, 12:7 (1976), 1323–1326 | MR | Zbl