Automata all of whose congruences are inner
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 36-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

A congruence on an automaton $\mathbf A$ is called inner if it is the kernel of a certain endomorphism on $\mathbf A$. We propose a characterization of automata, all of whose congruences are inner.
Keywords: automaton, congruence, inner congruence
Mots-clés : endomorphism.
@article{IVM_2009_9_a3,
     author = {V. N. Salii},
     title = {Automata all of whose congruences are inner},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--45},
     publisher = {mathdoc},
     number = {9},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a3/}
}
TY  - JOUR
AU  - V. N. Salii
TI  - Automata all of whose congruences are inner
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 36
EP  - 45
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_9_a3/
LA  - ru
ID  - IVM_2009_9_a3
ER  - 
%0 Journal Article
%A V. N. Salii
%T Automata all of whose congruences are inner
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 36-45
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_9_a3/
%G ru
%F IVM_2009_9_a3
V. N. Salii. Automata all of whose congruences are inner. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 36-45. http://geodesic.mathdoc.fr/item/IVM_2009_9_a3/

[1] Fuchs L., Kertesz A., Szele T., “On abelian groups in which every homomorphic image can be embedded”, Acta Math. Hung., 7:3–4 (1956), 467–475 | MR | Zbl

[2] Rival I., Sands B., “Weak embeddings and embeddings of finite distributive lattices”, Arch. Math., 26:1 (1975), 346–352 | DOI | MR | Zbl

[3] Blyth T. S., Fang J., Silva H. J., “The endomorphism kernel property in finite distributive lattices and de Morgan algebras”, Commun. Algebra, 32:6 (2004), 2225–2242 | DOI | MR | Zbl

[4] Kireeva A. V., “Podgrafy i faktorizatsii funktsionalnykh grafov”, UMN, 48:2 (1993), 183–184 | MR | Zbl

[5] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | MR | Zbl

[6] Salii V. N., “O vnutrennikh kongruentsiyakh avtomatov”, Mezhdunarodn. algebr. konf., posv. 250-letiyu Mosk. un-ta, Tez. dokl., Moskva, 2004, 109–110

[7] Salii V. N., Universalnaya algebra i avtomaty, Izd-vo Sarat. un-ta, Saratov, 1988, 72 pp.

[8] Fang J., “An extended Ockam algebra with endomorphism kernel property”, Acta Math. Sinica, 23:9 (2007), 1611–1620 | DOI | Zbl