Mots-clés : endomorphism.
@article{IVM_2009_9_a3,
author = {V. N. Salii},
title = {Automata all of whose congruences are inner},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {36--45},
year = {2009},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a3/}
}
V. N. Salii. Automata all of whose congruences are inner. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 36-45. http://geodesic.mathdoc.fr/item/IVM_2009_9_a3/
[1] Fuchs L., Kertesz A., Szele T., “On abelian groups in which every homomorphic image can be embedded”, Acta Math. Hung., 7:3–4 (1956), 467–475 | MR | Zbl
[2] Rival I., Sands B., “Weak embeddings and embeddings of finite distributive lattices”, Arch. Math., 26:1 (1975), 346–352 | DOI | MR | Zbl
[3] Blyth T. S., Fang J., Silva H. J., “The endomorphism kernel property in finite distributive lattices and de Morgan algebras”, Commun. Algebra, 32:6 (2004), 2225–2242 | DOI | MR | Zbl
[4] Kireeva A. V., “Podgrafy i faktorizatsii funktsionalnykh grafov”, UMN, 48:2 (1993), 183–184 | MR | Zbl
[5] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | MR | Zbl
[6] Salii V. N., “O vnutrennikh kongruentsiyakh avtomatov”, Mezhdunarodn. algebr. konf., posv. 250-letiyu Mosk. un-ta, Tez. dokl., Moskva, 2004, 109–110
[7] Salii V. N., Universalnaya algebra i avtomaty, Izd-vo Sarat. un-ta, Saratov, 1988, 72 pp.
[8] Fang J., “An extended Ockam algebra with endomorphism kernel property”, Acta Math. Sinica, 23:9 (2007), 1611–1620 | DOI | Zbl