The absolutely representing families in certain classes of locally convex spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 25-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

A collection $X_\Lambda=\{x_\alpha\colon\alpha\in\Lambda\}$ of nonzero elements of a complete separable locally convex space $H$ over a field of scalars $\Psi$ ($\Psi=\mathbb R$ or $\mathbb C$), where $\Lambda$ is a certain set of indices, is said to be an absolutely representing family (ARF) in $H$ if $\forall x\in H$ one can find a family in the form $\{c_\alpha x_\alpha\colon c_\alpha\in\Psi$, $\alpha\in\Lambda\}$, that is absolutely summable to $x$ in $H$. In this paper we study certain properties of ARFs in the Fréchet spaces and strong adjoints to reflexive Fréchet spaces. We pay the most attention to obtaining the criteria that allow one to conclude that a given collection $X_\Lambda$ is an ARF in $H$.
Keywords: absolutely representing family, dual theory, locally convex spaces
Mots-clés : Fréchet spaces.
@article{IVM_2009_9_a2,
     author = {Yu. F. Korobeinik},
     title = {The absolutely representing families in certain classes of locally convex spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--35},
     publisher = {mathdoc},
     number = {9},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a2/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - The absolutely representing families in certain classes of locally convex spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 25
EP  - 35
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_9_a2/
LA  - ru
ID  - IVM_2009_9_a2
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T The absolutely representing families in certain classes of locally convex spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 25-35
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_9_a2/
%G ru
%F IVM_2009_9_a2
Yu. F. Korobeinik. The absolutely representing families in certain classes of locally convex spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 25-35. http://geodesic.mathdoc.fr/item/IVM_2009_9_a2/

[1] Korobeinik Yu. F., “Absolyutno predstavlyayuschie semeistva”, Matem. zametki, 42:5 (1987), 670–680 | MR

[2] Korobeinik Yu. F., “Absolyutno predstavlyayuschie semeistva i realizatsiya sopryazhennogo prostranstva”, Izv. vuzov. Matematika, 1990, no. 2, 68–76 | MR

[3] Korobeinik Yu. F., “Ob odnoi dvoistvennoi zadache. I. Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Matem. sb., 97(139):2 (1975), 193–229 | MR | Zbl

[4] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 42:2 (1978), 325–355 | MR | Zbl

[5] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl

[6] Korobeinik Yu. F., “Induktivnye i proektivnye topologii. Dostatochnye mnozhestva i predstavlyayuschie sistemy”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 539–565 | MR | Zbl

[7] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp.

[8] Sebastyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matem. Sb. perevodov, 1:1 (1957), 60–77

[9] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, GIFML, M., 1959, 684 pp.

[10] Korobeinik Yu. F., Sherstyukov V. B., “Absolyutno predstavlyayuschie sistemy v prostranstvakh Freshe. Svyaz s dostatochnymi mnozhestvami”, Izv. vuzov. Sev.-Kavk. region. Ser. Estestv. nauki, 1998, no. 4, 22–23 | MR | Zbl

[11] Korobeinik Yu. F., Sherstyukov V. B., Absolyutno predstavlyayuschie sistemy v prostranstvakh Freshe. Svyaz s dostatochnymi mnozhestvami, Rukopis dep. v VINITI 7.08.1998, No 2132-V98, Rostov-na-Donu, 1998, 9 pp.

[12] Korobeinik Yu. F., Melikhov S. N., “Realizatsiya sopryazhennogo prostranstva s pomoschyu obobschennogo preobrazovaniya Fure–Borelya. Prilozheniya”, Kompleksnyi analiz i matem. fizika, Sibir. otdelenie AN SSSR. In-t fiziki im. L. V. Kirenskogo, Krasnoyarsk, 1988, 62–73 | MR

[13] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969, 1071 pp.

[14] Korobeinik Yu. F., Operatory sdviga na chislovykh semeistvakh, Izd-vo RGU, Rostov-na-Donu, 1983, 155 pp.

[15] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967, 256 pp. | MR

[16] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967, 257 pp. | Zbl

[17] Raikov D. A., “Induktivnye i proektivnye predely s vpolne nepreryvnymi vlozheniyami”, DAN SSSR, 113:5 (1957), 984–986 | MR | Zbl