Complex powers of degenerating differential operators connected with the Klein--Gordon--Fock operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 3-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a theory of complex powers of the generalized Klein–Gordon–Fock operator
$$
m^2-\square-i\lambda\frac{\partial^2}{\partial x^2_1},\qquad\lambda>0.
$$
The negative powers of this operator are realized as potential-type integrals with nonstandard metrics, while positive powers inverse to negative ones are realized as approximative inverse operators.
Keywords:
potential-type operator, inverse operator, approximative inverse operator.
Mots-clés : symbol
Mots-clés : symbol
@article{IVM_2009_9_a0,
author = {D. V. Vozhzhov and V. A. Nogin},
title = {Complex powers of degenerating differential operators connected with the {Klein--Gordon--Fock} operator},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--12},
publisher = {mathdoc},
number = {9},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_9_a0/}
}
TY - JOUR AU - D. V. Vozhzhov AU - V. A. Nogin TI - Complex powers of degenerating differential operators connected with the Klein--Gordon--Fock operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 3 EP - 12 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_9_a0/ LA - ru ID - IVM_2009_9_a0 ER -
%0 Journal Article %A D. V. Vozhzhov %A V. A. Nogin %T Complex powers of degenerating differential operators connected with the Klein--Gordon--Fock operator %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 3-12 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_9_a0/ %G ru %F IVM_2009_9_a0
D. V. Vozhzhov; V. A. Nogin. Complex powers of degenerating differential operators connected with the Klein--Gordon--Fock operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2009), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2009_9_a0/