Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_8_a4, author = {I. V. Konnov}, title = {Descent method with inexact linesearch procedure for mixed variational inequalities}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {37--44}, publisher = {mathdoc}, number = {8}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_8_a4/} }
I. V. Konnov. Descent method with inexact linesearch procedure for mixed variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 37-44. http://geodesic.mathdoc.fr/item/IVM_2009_8_a4/
[1] Lescarret C., “Cas d'addition des applications monotones maximales dans un espace de Hilbert”, Compt. Rend. Acad. Sci. (Paris), 261 (1965), 1160–1163 | MR | Zbl
[2] Browder F. E., “On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces”, Proc. National Academy of Sciences of the USA, 56:2 (1966), 419–425 | DOI | MR | Zbl
[3] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988, 448 pp. | MR | Zbl
[4] Auchmuty G., “Variational principles for variational inequalities”, Numer. Funct. Anal. and Optimization, 10:9–10 (1989), 863–874 | DOI | MR | Zbl
[5] Fukushima M., “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems”, Math. Programming, 53:1 (1992), 99–110 | DOI | MR | Zbl
[6] Patriksson M., “Merit functions and descent algorithms for a class of variational inequality problems”, Optimization, 41:1 (1997), 37–55 | DOI | MR | Zbl
[7] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer Academic Publishers, Dordrecht, 1999, 348 pp. | MR | Zbl
[8] Konnov I. V., Pinyagina O. V., “Metod spuska po intervalnoi funktsii dlya negladkikh zadach ravnovesiya”, Izv. vuzov. Matematika, 2003, no. 12, 71–77 | MR | Zbl
[9] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR
[10] Konnov I. V., Metody nedifferentsiruemoi optimizatsii, Kazansk. un-t, Kazan, 1993, 100 pp.
[11] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, V. I, II, Springer, Berlin, 2003, 1394 pp.
[12] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001, 193 pp. | MR
[13] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR
[14] Konnov I. V., Kum S., Lee G. M., “On convergence of descent methods for variational inequalities in a Hilbert space”, Math. Meth. Oper. Res., 55:3 (2002), 371–382 | DOI | MR | Zbl
[15] Konnov I. V., “Application of the proximal point method to nonmonotone equilibrium problems”, J. Optimiz. Theory Appl., 119:2 (2003), 317–333 | DOI | MR | Zbl
[16] Konnov I. V., Pinyagina O. V., “$D$-gap functions and descent methods for a class of monotone equilibrium problems”, Lobachevskii J. Math., 13 (2003), 57–65 | MR | Zbl
[17] Pinyagina O. V., “Metod spuska po intervalnoi funktsii dlya negladkikh monotonnykh zadach ravnovesiya”, Vychisl. metody i progr., 5 (2004), 154–160
[18] Konnov I. V., Ali M. S. S., “Descent methods for monotone equilibrium problems in Banach spaces”, J. Comput. Appl. Mathem., 188:2 (2006), 165–179 | DOI | MR | Zbl