Descent method with inexact linesearch procedure for mixed variational inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 37-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a descent method with respect to a merit function for a mixed variational inequality, involving a general nonlinear mapping and a convex but not necessarily differentiable function. The method utilizes an inexact linesearch procedure. Its convergence is proved under the additional assumptions of continuity and strong monotonicity of the cost mapping.
Keywords: mixed variational inequalities, descent method, inexact linesearch.
@article{IVM_2009_8_a4,
     author = {I. V. Konnov},
     title = {Descent method with inexact linesearch procedure for mixed variational inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--44},
     publisher = {mathdoc},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_8_a4/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Descent method with inexact linesearch procedure for mixed variational inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 37
EP  - 44
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_8_a4/
LA  - ru
ID  - IVM_2009_8_a4
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Descent method with inexact linesearch procedure for mixed variational inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 37-44
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_8_a4/
%G ru
%F IVM_2009_8_a4
I. V. Konnov. Descent method with inexact linesearch procedure for mixed variational inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 37-44. http://geodesic.mathdoc.fr/item/IVM_2009_8_a4/

[1] Lescarret C., “Cas d'addition des applications monotones maximales dans un espace de Hilbert”, Compt. Rend. Acad. Sci. (Paris), 261 (1965), 1160–1163 | MR | Zbl

[2] Browder F. E., “On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces”, Proc. National Academy of Sciences of the USA, 56:2 (1966), 419–425 | DOI | MR | Zbl

[3] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988, 448 pp. | MR | Zbl

[4] Auchmuty G., “Variational principles for variational inequalities”, Numer. Funct. Anal. and Optimization, 10:9–10 (1989), 863–874 | DOI | MR | Zbl

[5] Fukushima M., “Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems”, Math. Programming, 53:1 (1992), 99–110 | DOI | MR | Zbl

[6] Patriksson M., “Merit functions and descent algorithms for a class of variational inequality problems”, Optimization, 41:1 (1997), 37–55 | DOI | MR | Zbl

[7] Patriksson M., Nonlinear programming and variational inequality problems: a unified approach, Kluwer Academic Publishers, Dordrecht, 1999, 348 pp. | MR | Zbl

[8] Konnov I. V., Pinyagina O. V., “Metod spuska po intervalnoi funktsii dlya negladkikh zadach ravnovesiya”, Izv. vuzov. Matematika, 2003, no. 12, 71–77 | MR | Zbl

[9] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[10] Konnov I. V., Metody nedifferentsiruemoi optimizatsii, Kazansk. un-t, Kazan, 1993, 100 pp.

[11] Facchinei F., Pang J.-S., Finite-dimensional variational inequalities and complementarity problems, V. I, II, Springer, Berlin, 2003, 1394 pp.

[12] Konnov I. V., Combined relaxation methods for variational inequalities, Springer, Berlin, 2001, 193 pp. | MR

[13] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR

[14] Konnov I. V., Kum S., Lee G. M., “On convergence of descent methods for variational inequalities in a Hilbert space”, Math. Meth. Oper. Res., 55:3 (2002), 371–382 | DOI | MR | Zbl

[15] Konnov I. V., “Application of the proximal point method to nonmonotone equilibrium problems”, J. Optimiz. Theory Appl., 119:2 (2003), 317–333 | DOI | MR | Zbl

[16] Konnov I. V., Pinyagina O. V., “$D$-gap functions and descent methods for a class of monotone equilibrium problems”, Lobachevskii J. Math., 13 (2003), 57–65 | MR | Zbl

[17] Pinyagina O. V., “Metod spuska po intervalnoi funktsii dlya negladkikh monotonnykh zadach ravnovesiya”, Vychisl. metody i progr., 5 (2004), 154–160

[18] Konnov I. V., Ali M. S. S., “Descent methods for monotone equilibrium problems in Banach spaces”, J. Comput. Appl. Mathem., 188:2 (2006), 165–179 | DOI | MR | Zbl