The embedding and approximation of classes of functions with a~dominant mixed difference
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 83-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for embedding the class $SH_p^\Omega$ into that $SB_{q,\theta}^{\Omega^*}$ ($1$). We also determine the exact order of the best approximations of functions from classes $SB_{p,\theta}^\Omega$ by trigonometric polynomials whose harmonics belong to sets generated by level surfaces of the majorant $\Lambda(t)$.
Mots-clés : Besov's spases
Keywords: embedding theorem, modulus of continuity, best approximations.
@article{IVM_2009_8_a10,
     author = {M. B. Sikhov},
     title = {The embedding and approximation of classes of functions with a~dominant mixed difference},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--86},
     publisher = {mathdoc},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_8_a10/}
}
TY  - JOUR
AU  - M. B. Sikhov
TI  - The embedding and approximation of classes of functions with a~dominant mixed difference
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 83
EP  - 86
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_8_a10/
LA  - ru
ID  - IVM_2009_8_a10
ER  - 
%0 Journal Article
%A M. B. Sikhov
%T The embedding and approximation of classes of functions with a~dominant mixed difference
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 83-86
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_8_a10/
%G ru
%F IVM_2009_8_a10
M. B. Sikhov. The embedding and approximation of classes of functions with a~dominant mixed difference. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2009), pp. 83-86. http://geodesic.mathdoc.fr/item/IVM_2009_8_a10/

[1] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, 1956, 483–522 | MR | Zbl

[2] Ulyanov P. L., “O modulyakh nepreryvnosti i koeffitsientakh Fure”, Vestn. MGU. Ser. matem., mekh., 1995, no. 1, 37–52 | MR

[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[5] Amanov T. I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Almaty, 1976, 224 pp. | MR

[6] Din Zung, “Priblizhenie funktsii mnogikh peremennykh na tore trigonometricheskimi polinomami”, Matem. sb., 131(173):2 (1986), 251–271 | MR | Zbl

[7] Pustovoitov N N., “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 20 (1994), 35–48 | DOI | MR | Zbl

[8] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_p^\omega$”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 649–686 | MR | Zbl

[9] Sun Yongsheng, Wang Heping, “Reprezentation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness”, Tr. MIAN, 219, 1997, 356–377 | MR | Zbl