One theorem about strongly $\eta$-representable sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 77-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider strongly $\eta$-representable sets. We prove that the union of $\Sigma^0_2$- and $\Pi^0_2$-sets is strongly $\eta$-representable.
Keywords: computability, linear order, strong $\eta$-representability.
@article{IVM_2009_7_a7,
     author = {M. V. Zubkov},
     title = {One theorem about strongly $\eta$-representable sets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--81},
     publisher = {mathdoc},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a7/}
}
TY  - JOUR
AU  - M. V. Zubkov
TI  - One theorem about strongly $\eta$-representable sets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 77
EP  - 81
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_7_a7/
LA  - ru
ID  - IVM_2009_7_a7
ER  - 
%0 Journal Article
%A M. V. Zubkov
%T One theorem about strongly $\eta$-representable sets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 77-81
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_7_a7/
%G ru
%F IVM_2009_7_a7
M. V. Zubkov. One theorem about strongly $\eta$-representable sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 77-81. http://geodesic.mathdoc.fr/item/IVM_2009_7_a7/

[1] Soar R. I., Vychislimo perechislimye mnozhestva i stepeni, Kazansk. matem. o-vo, Kazan, 2000, 576 pp. | MR | Zbl

[2] Downey R. G., “Computability theory and linear orderings”, Handbook of computable algebra, V. 2, Elsevier, Amsterdam, 1998, 823–976 | MR | Zbl

[3] Rosenstein J., Linear orderings, Academic Press, New York, 1982, 487 pp. | MR | Zbl

[4] Fellner S., Recursive and finite axiomatizability of linear orderings, Ph. D. Thesis, Rutgers. Univ., 1976

[5] Lerman M., “On recursive linear orderings”, Lect. Notes Math., 859, 1981, 132–142 | MR | Zbl

[6] Harris K., “$\eta$-representation of sets and degrees”, J. Symbolic Logic, 73 (2008), 1097–1121 | DOI | MR | Zbl

[7] Arslanov M. M., Ierarkhiya Ershova, Izd-vo KGU, Kazan, 2007, 86 pp.

[8] Kach A. M., Turetsky D., Limitwise monotonic functions, sets and degrees on computable domaine, submission http://www.math.uconn.edu/~kach/mathematics/mymathematics.html