Optimization of one class of hyperbolic systems with smooth controls
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 71-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the optimal control problem for a system of first-order hyperbolic equations. The right-hand side of this system is determined by a control system of ordinary differential equations. Admissible controls belong to the class of smooth functions. We obtain an optimality condition and propose a general scheme of improvement methods for the mentioned problem.
Keywords: hyperbolic systems, smooth controls, necessary optimality conditions, improvement method.
@article{IVM_2009_7_a6,
     author = {A. V. Arguchintsev and V. P. Poplevko},
     title = {Optimization of one class of hyperbolic systems with smooth controls},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--76},
     publisher = {mathdoc},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a6/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
AU  - V. P. Poplevko
TI  - Optimization of one class of hyperbolic systems with smooth controls
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 71
EP  - 76
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_7_a6/
LA  - ru
ID  - IVM_2009_7_a6
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%A V. P. Poplevko
%T Optimization of one class of hyperbolic systems with smooth controls
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 71-76
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_7_a6/
%G ru
%F IVM_2009_7_a6
A. V. Arguchintsev; V. P. Poplevko. Optimization of one class of hyperbolic systems with smooth controls. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 71-76. http://geodesic.mathdoc.fr/item/IVM_2009_7_a6/

[1] Demidenko N. D., Potapov V. I., Shokin Yu. I., Modelirovanie i optimizatsiya sistem s raspredelennymi parametrami, Nauka, Novosibirsk, 2006, 551 pp.

[2] Arguchintsev A. V., Optimalnoe upravlenie giperbolicheskimi sistemami, Fizmatlit, M., 2007, 168 pp.

[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978, 687 pp. | MR | Zbl