Dual affine-metrically connected spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 65-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the dual geometry of a normalized affinely connected space $\mathrm A_{n,n}$. In particular, we consider the dual affine-metrically connected spaces $\overset p{\mathrm M}_{n,n}$ induced by a nondegenerate normalization of the affine-metrically connected space $\mathrm M_{n,n}$.
Keywords: affine connection, affine-metrically connected space, space with absolute parallelism, nondegenerate normalization, harmonic normalization, polar normalization.
@article{IVM_2009_7_a5,
     author = {T. G. Alenina},
     title = {Dual affine-metrically connected spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--70},
     publisher = {mathdoc},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a5/}
}
TY  - JOUR
AU  - T. G. Alenina
TI  - Dual affine-metrically connected spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 65
EP  - 70
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_7_a5/
LA  - ru
ID  - IVM_2009_7_a5
ER  - 
%0 Journal Article
%A T. G. Alenina
%T Dual affine-metrically connected spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 65-70
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_7_a5/
%G ru
%F IVM_2009_7_a5
T. G. Alenina. Dual affine-metrically connected spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 65-70. http://geodesic.mathdoc.fr/item/IVM_2009_7_a5/

[1] Laptev G. F., “O vydelenii odnogo klassa vnutrennikh geometrii, indutsirovannykh na poverkhnosti prostranstva affinnoi svyaznosti”, DAN SSSR, 41:8 (1943), 329–331 | MR

[2] Stolyarov A. V., “Dvoistvennaya geometriya normalizovannogo prostranstva affinnoi svyaznosti”, Vestn. Chuvashsk. gos. ped. un-ta, 2005, no. 4, 21–27

[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR | Zbl

[4] Stolyarov A. V., Dvoistvennaya teoriya osnaschennykh mnogoobrazii, Chuvashsk. gos. ped. in-t, Cheboksary, 1994, 290 pp. | MR | Zbl

[5] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967, 664 pp. | MR

[6] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl

[7] Stolyarov A. V., “Prostranstvo proektivno-metricheskoi svyaznosti”, Izv. vuzov. Matematika, 2003, no. 11, 70–76 | MR | Zbl

[8] Stolyarov A. V., “Affinno-metricheskaya svyaznost”, Vestn. Chuvashsk. gos. ped. un-ta, 2006, no. 5, 158–167