Multivalued dynamic systems with weights
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 35-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $m$-valued transformations of the probability space $(X,\mathcal B,\mu)$ endowed with a set of weights $\Bigl\{\alpha_j\colon X\to(0,1],\ \sum_{j=1}^m\alpha_j\equiv1\Bigr\}$. For this case we introduce analogs of the basic notions of the ergodic theory, namely, the measure invariance, ergodicity, Koopman and Frobenius–Perron operators. We study the properties of these operators, prove ergodic theorems, and give some examples. We also propose a technique for reducing some problems of the fractal geometry to those of the functional analysis.
Keywords: dynamic system, multivalued transformation, invariant measure, ergodic theory.
@article{IVM_2009_7_a3,
     author = {P. I. Troshin},
     title = {Multivalued dynamic systems with weights},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--50},
     publisher = {mathdoc},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a3/}
}
TY  - JOUR
AU  - P. I. Troshin
TI  - Multivalued dynamic systems with weights
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 35
EP  - 50
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_7_a3/
LA  - ru
ID  - IVM_2009_7_a3
ER  - 
%0 Journal Article
%A P. I. Troshin
%T Multivalued dynamic systems with weights
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 35-50
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_7_a3/
%G ru
%F IVM_2009_7_a3
P. I. Troshin. Multivalued dynamic systems with weights. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 35-50. http://geodesic.mathdoc.fr/item/IVM_2009_7_a3/

[1] Igudesman K. B., “Dynamics of finite-multivalued transformations”, Lobachevskii J. Math., 17 (2005), 47–60 | MR | Zbl

[2] Lasota A., Mackey M., Chaos, fractals, and noise, Springer-Verlag, New York, 1994, 472 pp. | MR | Zbl

[3] Foguel S., Selected topics in the study of Markov operators, Department of Mathematics, University of North Carolina at Chapel Hill, N. Carolina, 1980, 116 pp. | MR | Zbl

[4] Peres Y., Solomyak B., “Self-similar measures and intersections of Cantor sets”, Trans. Amer. Math. Soc., 350:10 (1998), 4065–4087 | DOI | MR | Zbl

[5] Broomhead D., Montaldi J., Sidorov N., “Golden gaskets: variations on the Serpiński sieve”, Nonlinearity, 17:4 (2004), 1455–1480 | DOI | MR | Zbl

[6] Ngai S. M., Wang Y., “Hausdorff dimension of self-similar sets with overlaps”, J. London Math. Soc., 63 (2001), 655–672 | DOI | MR | Zbl