High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 22-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper for the finite element method for systems of degenerate elliptic equations we develop high-accuracy schemes based on multiplicative singularity detection. We prove theorems about the smoothness of a solution. Based on these theorems we estimate the error of the proposed method.
Keywords: finite element method, degenerate elliptical equation, Sobolev space.
@article{IVM_2009_7_a2,
     author = {A. D. Lyashko and Sh. I. Tayupov and M. R. Timerbaev},
     title = {High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--34},
     publisher = {mathdoc},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a2/}
}
TY  - JOUR
AU  - A. D. Lyashko
AU  - Sh. I. Tayupov
AU  - M. R. Timerbaev
TI  - High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 22
EP  - 34
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_7_a2/
LA  - ru
ID  - IVM_2009_7_a2
ER  - 
%0 Journal Article
%A A. D. Lyashko
%A Sh. I. Tayupov
%A M. R. Timerbaev
%T High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 22-34
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_7_a2/
%G ru
%F IVM_2009_7_a2
A. D. Lyashko; Sh. I. Tayupov; M. R. Timerbaev. High-accuracy schemes of the finite element method for systems of degenerate elliptic equations on an interval. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 22-34. http://geodesic.mathdoc.fr/item/IVM_2009_7_a2/

[1] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966, 292 pp. | MR

[2] Lizorkin P. I., Nikolskii S. M., “Ellipticheskie uravneniya s vyrozhdeniem. Differentsialnye svoistva”, DAN SSSR, 257:2 (1981), 278–282 | MR | Zbl

[3] Kydyraliev S. K., “O povyshenii gladkosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 25:3 (1989), 529–531 | MR | Zbl

[4] Timerbaev M. R., “Vesovye otsenki resheniya zadachi Dirikhle s anizotropnym vyrozhdeniem na chasti granitsy”, Izv. vuzov. Matematika, 2003, no. 1, 60–73 | MR | Zbl

[5] Gusman Yu. A., Oganesyan L. A., “Otsenki skhodimosti konechno-raznostnykh skhem dlya vyrozhdennykh ellipticheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 5:2 (1965), 351–357 | MR | Zbl

[6] Rukavishnikova E. I., “O poryadke skhodimosti metoda konechnykh elementov dlya ellipticheskoi kraevoi zadachi s vyrozhdeniem”, DVO AN SSSR, Vladivostok, 1987, 26–52

[7] Lyashko A. D., Timerbaev M. R., “Otsenki tochnosti skhem MKE dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 1993, no. 7, 1210–1215 | MR | Zbl

[8] Timerbaev M. R., Lyashko A. D., “Ob otsenkakh pogreshnosti skhem MKE dlya kvazilineinykh vyrozhdayuschikhsya uravnenii 2-go poryadka”, Differents. uravneniya, 1994, no. 7, 1239–1243 | MR | Zbl

[9] Timerbaev M. R., “Konechnoelementnaya approksimatsiya vyrozhdayuschegosya ellipticheskogo uravneniya 2-go poryadka v oblasti s krivolineinoi granitsei”, Izv. vuzov. Matematika, 1994, no. 9, 78–86 | MR | Zbl

[10] Karchevskii M. M., Lyashko A. D., Timerbaev M. R., “Metod konechnykh elementov dlya kvazilineinykh vyrozhdayuschikhsya uravnenii 4-go poryadka”, Differents. uravneniya, 35:2 (1999), 232–237 | MR

[11] Timerbaev M. R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Differents. uravneniya, 36:7 (2000), 1086–1093 | MR | Zbl

[12] Kudryavtsev L. D., “Ob ekvivalentnykh normakh v vesovykh prostranstvakh”, Tr. MIAN, 170, 1984, 161–190 | MR | Zbl

[13] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[14] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[15] Timerbaev M. R., “O nepreryvnosti integralnykh operatorov v prostranstvakh vektor-funktsii”, Issledov. po prikladnoi matem. i informatike, 23, Izd-vo Kazansk. matem. o-va, 2001, 118–121 | MR

[16] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR