Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_7_a0, author = {V. V. Krasil'shchikov and A. V. Shutov and V. G. Zhuravlev}, title = {One-dimensional quasiperiodic tilings admitting progressions enclosure}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--9}, publisher = {mathdoc}, number = {7}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/} }
TY - JOUR AU - V. V. Krasil'shchikov AU - A. V. Shutov AU - V. G. Zhuravlev TI - One-dimensional quasiperiodic tilings admitting progressions enclosure JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 3 EP - 9 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/ LA - ru ID - IVM_2009_7_a0 ER -
%0 Journal Article %A V. V. Krasil'shchikov %A A. V. Shutov %A V. G. Zhuravlev %T One-dimensional quasiperiodic tilings admitting progressions enclosure %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 3-9 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/ %G ru %F IVM_2009_7_a0
V. V. Krasil'shchikov; A. V. Shutov; V. G. Zhuravlev. One-dimensional quasiperiodic tilings admitting progressions enclosure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/
[1] Moody R. V., “Model sets: a survey”, From quasicrystals to more complex systems, eds. F. Alex, F. Dénoyer, J. P. Gazeau, EPD Science, Les Ulis; Springer-Verlag, Berlin, 2000, 145–166
[2] Fogg N. Pytheas, Substitutions in dynamics, arithmetics and combinatorics, Springer, 2002, 402 pp. | MR | Zbl
[3] Baake M., Schlottmann M., “Geometric aspects of tilings and equivalence concepts”, Proc. Fifth Conf. quasiqrystals, Singapore, 1995, 15–21
[4] de Bruijn N. G., “Algebraic theory of Penrose's non-periodic tilings of the plane”, Math. Proc. A, 84 (1981), 39–52
[5] Duneau M., Katz A., “Quasiperiodic patterns”, Phys. Rev. Lett., 54 (1985), 2688–2691 | DOI | MR
[6] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi. Noveishie problemy teorii polya”, Tr. XVII Mezhdunarodn. letnei shkoly-seminara “ Volga-17' 05” po sovremen. probl. teor. i matem. fiz., T. 5, Izd-vo KGU, Kazan, 2006, 40–55
[7] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 322, 2005, 83–106 | MR | Zbl
[8] Zhuravlev V. G., Maleev A. V., “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:1 (2007), 204–210
[9] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Cer. matem., 71:2 (2007), 89–122 | MR | Zbl
[10] Zhuravlev V. G., “Odnomernye kvazireshetki Fibonachchi i ikh prilozheniya k diofantovym uravneniyam i algoritmu Evklida”, Algebra i analiz, 19:3 (2007), 151–182 | MR
[11] Zhuravlev V. G., “One-dimensional Fibonacci tilings and derivatives of two-colour rotations of a circle”, Max-Plank-Institut für Mathematik Preprint Series, 59 (2004), 1–43 | MR
[12] Krasilschikov V. V., Shutov A. V., “Odnomernye kvazikristally: approksimatsiya periodicheskimi strukturami i vlozhenie reshetok. Noveishie problemy teorii polya”, Tr. XVII Mezhdunarodn. letnei shkoly-seminara “Volga-17' 05” po sovremen. probl. teor. i matem. fiz., T. 5, Izd-vo KGU, Kazan, 2006, 145–154
[13] Krasilschikov V. V., Shutov A. V., “O nekotorykh svoistvakh odnomernykh kvazikristallov”, Tez. dokl. XVIII Mezhdunarodn. letnei shkoly-seminara “Volga-18' 06” po sovremen. probl. teor. i matem. fiz., Kazan, 2006, 45–46
[14] Hecke E., “Über Analytische Funktionen und die Verteilung der Zahlen modulo Eins”, Math. Sem. Hamburg Univ., 1:1 (1922), 54–76 | DOI | MR
[15] Kesten H., “On a conjecture of Erdős and Szüsz related to uniform distribution $\mathrm{mod}1$”, Acta Arith., 12 (1966), 193–212 | MR | Zbl
[16] Ostrowski A., “Notiz zur Theorie der Diophantischen Approximationen und zur Theorie der linearen Diophantischen Approximationen”, Math. Miszelleren XVI, Jahresber. Deutschen Math. Ver., 39 (1939), 34–46
[17] Shutov A. V., “Sistemy schisleniya i mnozhestva ogranichennogo ostatka”, Tr. konf. “Analiticheskie i kombinatornye metody v teorii chisel”, M., 2006, 106–115