One-dimensional quasiperiodic tilings admitting progressions enclosure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider one-dimensional quasiperiodic tilings based on the use of irrational rotations of a circle.
We completely describe a wide class of progressions included in the mentioned tilings.
Keywords:
one-dimensional quasiperiodic tilings, lattice enclosure.
@article{IVM_2009_7_a0,
author = {V. V. Krasil'shchikov and A. V. Shutov and V. G. Zhuravlev},
title = {One-dimensional quasiperiodic tilings admitting progressions enclosure},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--9},
publisher = {mathdoc},
number = {7},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/}
}
TY - JOUR AU - V. V. Krasil'shchikov AU - A. V. Shutov AU - V. G. Zhuravlev TI - One-dimensional quasiperiodic tilings admitting progressions enclosure JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 3 EP - 9 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/ LA - ru ID - IVM_2009_7_a0 ER -
%0 Journal Article %A V. V. Krasil'shchikov %A A. V. Shutov %A V. G. Zhuravlev %T One-dimensional quasiperiodic tilings admitting progressions enclosure %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 3-9 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/ %G ru %F IVM_2009_7_a0
V. V. Krasil'shchikov; A. V. Shutov; V. G. Zhuravlev. One-dimensional quasiperiodic tilings admitting progressions enclosure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/