One-dimensional quasiperiodic tilings admitting progressions enclosure
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider one-dimensional quasiperiodic tilings based on the use of irrational rotations of a circle. We completely describe a wide class of progressions included in the mentioned tilings.
Keywords: one-dimensional quasiperiodic tilings, lattice enclosure.
@article{IVM_2009_7_a0,
     author = {V. V. Krasil'shchikov and A. V. Shutov and V. G. Zhuravlev},
     title = {One-dimensional quasiperiodic tilings admitting progressions enclosure},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/}
}
TY  - JOUR
AU  - V. V. Krasil'shchikov
AU  - A. V. Shutov
AU  - V. G. Zhuravlev
TI  - One-dimensional quasiperiodic tilings admitting progressions enclosure
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 3
EP  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/
LA  - ru
ID  - IVM_2009_7_a0
ER  - 
%0 Journal Article
%A V. V. Krasil'shchikov
%A A. V. Shutov
%A V. G. Zhuravlev
%T One-dimensional quasiperiodic tilings admitting progressions enclosure
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 3-9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/
%G ru
%F IVM_2009_7_a0
V. V. Krasil'shchikov; A. V. Shutov; V. G. Zhuravlev. One-dimensional quasiperiodic tilings admitting progressions enclosure. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2009), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2009_7_a0/