Integral representation of velocity in a flow with separation simulated by a vortex sheet
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 73-75
Cet article a éte moissonné depuis la source Math-Net.Ru
The goal of this paper is to present a new integral operator that defines the velocity of a streamline flow in terms of the intensity of a free vortex sheet. This operator is important for numerical simulation of flows.
Keywords:
separation flow, vortex sheet, integral operator.
@article{IVM_2009_6_a10,
author = {R. R. Shagidullin},
title = {Integral representation of velocity in a~flow with separation simulated by a~vortex sheet},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {73--75},
year = {2009},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_6_a10/}
}
R. R. Shagidullin. Integral representation of velocity in a flow with separation simulated by a vortex sheet. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2009), pp. 73-75. http://geodesic.mathdoc.fr/item/IVM_2009_6_a10/
[1] Alekseenko S. V., Kuibin P. A., Okulov V. L., Vvedenie v teoriyu kontsentrirovannykh vikhrei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 504 pp.
[2] Majda A. J., Bertozzi A. L., Vorticity and incompressible flow, Cambridge University Press, 2002, 550 pp. | MR | Zbl
[3] Gaier D., “Integralgleichungen erster Art und konforme Abbildungen”, Math. Z., 147 (1976), 113–129 | DOI | MR | Zbl
[4] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1958, 678 pp. | MR
[5] Shagidullin R. R., Chislennyi metod diskretnykh vikhrei, Uchebnoe posobie, Izd-vo KGU, Kazan, 1986, 108 pp. | Zbl