$\mathbb R$-conformal invariants of curves
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 78-81
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we describe the structure of the algebra of scalar differential invariants of curves on a plane with Euclidean or Minkowski metrics with respect to $\mathbb R$-conformal transformations.
Keywords:
scalar differential invariant, invariant differentiation
Mots-clés : conformal transformation.
Mots-clés : conformal transformation.
@article{IVM_2009_5_a9,
author = {I. S. Strel'tsova},
title = {$\mathbb R$-conformal invariants of curves},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {78--81},
year = {2009},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a9/}
}
I. S. Strel'tsova. $\mathbb R$-conformal invariants of curves. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 78-81. http://geodesic.mathdoc.fr/item/IVM_2009_5_a9/
[1] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Fundam. napravleniya, 28, VINITI, M., 1988, 5–289 | MR | Zbl
[2] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Cambridge University Press, 2007, 496 pp. | Zbl