$\mathbb R$-conformal invariants of curves
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the structure of the algebra of scalar differential invariants of curves on a plane with Euclidean or Minkowski metrics with respect to $\mathbb R$-conformal transformations.
Keywords: scalar differential invariant, invariant differentiation
Mots-clés : conformal transformation.
@article{IVM_2009_5_a9,
     author = {I. S. Strel'tsova},
     title = {$\mathbb R$-conformal invariants of curves},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--81},
     publisher = {mathdoc},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a9/}
}
TY  - JOUR
AU  - I. S. Strel'tsova
TI  - $\mathbb R$-conformal invariants of curves
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 78
EP  - 81
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_5_a9/
LA  - ru
ID  - IVM_2009_5_a9
ER  - 
%0 Journal Article
%A I. S. Strel'tsova
%T $\mathbb R$-conformal invariants of curves
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 78-81
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_5_a9/
%G ru
%F IVM_2009_5_a9
I. S. Strel'tsova. $\mathbb R$-conformal invariants of curves. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 78-81. http://geodesic.mathdoc.fr/item/IVM_2009_5_a9/

[1] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Fundam. napravleniya, 28, VINITI, M., 1988, 5–289 | MR | Zbl

[2] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Cambridge University Press, 2007, 496 pp. | Zbl