Dual affine connections on a~quadratic hyperband distribution in a~projective-metric space and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 73-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we develop fundamental of the dual theory of quadric hyperbandal distribution $H$ of $m$-dimensional line elements in a projective metric space $K_n$ ($m$). In particular, we show that, on a dual normalized distribution $H$, there are induced two dual affine connections and indicate some applications of these connections to the geometry of $m$-webs on $H$.
Keywords: projective metric space, hyper-band distribution, affine connection, web.
@article{IVM_2009_5_a8,
     author = {E. N. Smirnova},
     title = {Dual affine connections on a~quadratic hyperband distribution in a~projective-metric space and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--77},
     publisher = {mathdoc},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a8/}
}
TY  - JOUR
AU  - E. N. Smirnova
TI  - Dual affine connections on a~quadratic hyperband distribution in a~projective-metric space and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 73
EP  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_5_a8/
LA  - ru
ID  - IVM_2009_5_a8
ER  - 
%0 Journal Article
%A E. N. Smirnova
%T Dual affine connections on a~quadratic hyperband distribution in a~projective-metric space and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 73-77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_5_a8/
%G ru
%F IVM_2009_5_a8
E. N. Smirnova. Dual affine connections on a~quadratic hyperband distribution in a~projective-metric space and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 73-77. http://geodesic.mathdoc.fr/item/IVM_2009_5_a8/

[1] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR

[2] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. matem. o-va, 2, M., 1953, 275–382 | MR | Zbl

[3] Stolyarov A. V., “Proektivno-differentsialnaya geometriya regulyarnogo giperpolosnogo raspredeleniya $m$-mernykh lineinykh elementov”, Itogi nauki i tekhn. Problemy geometrii, 7, VINITI, M., 1975, 117–151 | MR | Zbl

[4] Stolyarov A. V., Dvoistvennaya teoriya osnaschennykh mnogoobrazii, Chuvashsk. gos. ped. un-t im. I. Ya. Yakovleva, Cheboksary, 1994, 290 pp. | MR | Zbl

[5] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Itogi nauki i tekhn. Problemy geometrii, 9, VINITI, M., 1979, 246 pp. | MR | Zbl

[6] Stolyarov A. V., “O dvoistvennoi geometrii setei na regulyarnoi giperpolose”, Izv. vuzov. Matematika, 1977, no. 8, 68–78 | Zbl

[7] Bazylev V .T., “O setyakh na mnogomernykh poverkhnostyakh proektivnogo prostranstva”, Izv. vuzov. Matematika, 1966, no. 2, 9–19 | MR | Zbl

[8] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR | Zbl