A semiexplicit method for numerical solution of functional differential algebraic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 62-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study systems with delay effect that contain additional algebraic relations. We propose semiexplicit numerical methods of the Rosenbrock type. We prove the solvability of equations of a numerical model and estimate the order of the global error. The chosen parameters provide the third order of the error.
Keywords: numerical methods, method of the Rosenbrock type, functional differential equations, interpolation-extrapolation operator.
@article{IVM_2009_5_a6,
     author = {A. V. Lekomtsev and V. G. Pimenov},
     title = {A semiexplicit method for numerical solution of functional differential algebraic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--67},
     year = {2009},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/}
}
TY  - JOUR
AU  - A. V. Lekomtsev
AU  - V. G. Pimenov
TI  - A semiexplicit method for numerical solution of functional differential algebraic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 62
EP  - 67
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/
LA  - ru
ID  - IVM_2009_5_a6
ER  - 
%0 Journal Article
%A A. V. Lekomtsev
%A V. G. Pimenov
%T A semiexplicit method for numerical solution of functional differential algebraic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 62-67
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/
%G ru
%F IVM_2009_5_a6
A. V. Lekomtsev; V. G. Pimenov. A semiexplicit method for numerical solution of functional differential algebraic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 62-67. http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. T. 2. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 684 pp.

[2] Kholl D., Uatt D., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979, 312 pp.

[3] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[4] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2005, 256 pp.

[5] Pimenov V. G., “Chislennye metody resheniya FDAU i asimptoticheskoe razlozhenie reshenii singulyarnykh uravnenii s zapazdyvaniem”, Vestn. ChelGU. Ser. “Matem. Mekhan. Informatika”, Materialy Vserossiiskoi nauchnoi konferentsii (19–22 sentyabrya 2006), Chelyabinsk, 2007, 143–151

[6] Pimenov V. G., “Mnogoshagovye chislennye metody resheniya funktsionalno-differentsialno-algebraicheskikh uravnenii”, Tr. IMM UrO RAN, 13:2 (2007), 145–155