A semiexplicit method for numerical solution of functional differential algebraic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 62-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study systems with delay effect that contain additional algebraic relations. We propose semiexplicit numerical methods of the Rosenbrock type. We prove the solvability of equations of a numerical model and estimate the order of the global error. The chosen parameters provide the third order of the error.
Keywords: numerical methods, method of the Rosenbrock type, functional differential equations, interpolation-extrapolation operator.
@article{IVM_2009_5_a6,
     author = {A. V. Lekomtsev and V. G. Pimenov},
     title = {A semiexplicit method for numerical solution of functional differential algebraic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--67},
     publisher = {mathdoc},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/}
}
TY  - JOUR
AU  - A. V. Lekomtsev
AU  - V. G. Pimenov
TI  - A semiexplicit method for numerical solution of functional differential algebraic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 62
EP  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/
LA  - ru
ID  - IVM_2009_5_a6
ER  - 
%0 Journal Article
%A A. V. Lekomtsev
%A V. G. Pimenov
%T A semiexplicit method for numerical solution of functional differential algebraic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 62-67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/
%G ru
%F IVM_2009_5_a6
A. V. Lekomtsev; V. G. Pimenov. A semiexplicit method for numerical solution of functional differential algebraic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 62-67. http://geodesic.mathdoc.fr/item/IVM_2009_5_a6/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. T. 2. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 684 pp.

[2] Kholl D., Uatt D., Sovremennye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Mir, M., 1979, 312 pp.

[3] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp. | MR

[4] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2005, 256 pp.

[5] Pimenov V. G., “Chislennye metody resheniya FDAU i asimptoticheskoe razlozhenie reshenii singulyarnykh uravnenii s zapazdyvaniem”, Vestn. ChelGU. Ser. “Matem. Mekhan. Informatika”, Materialy Vserossiiskoi nauchnoi konferentsii (19–22 sentyabrya 2006), Chelyabinsk, 2007, 143–151

[6] Pimenov V. G., “Mnogoshagovye chislennye metody resheniya funktsionalno-differentsialno-algebraicheskikh uravnenii”, Tr. IMM UrO RAN, 13:2 (2007), 145–155