Localization of the method of guiding functions in the problem about periodic solutions of differential inclusions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem on the existence of forced oscillations in nonlinear objects governed by differential inclusions. We propose certain modifications of the methods of generalized and integral guiding functions.
Keywords: guiding function, differential inclusion, periodic problem, topological coincidence degree.
@article{IVM_2009_5_a2,
     author = {S. V. Kornev and V. V. Obukhovskii},
     title = {Localization of the method of guiding functions in the problem about periodic solutions of differential inclusions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--32},
     publisher = {mathdoc},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a2/}
}
TY  - JOUR
AU  - S. V. Kornev
AU  - V. V. Obukhovskii
TI  - Localization of the method of guiding functions in the problem about periodic solutions of differential inclusions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 23
EP  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_5_a2/
LA  - ru
ID  - IVM_2009_5_a2
ER  - 
%0 Journal Article
%A S. V. Kornev
%A V. V. Obukhovskii
%T Localization of the method of guiding functions in the problem about periodic solutions of differential inclusions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 23-32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_5_a2/
%G ru
%F IVM_2009_5_a2
S. V. Kornev; V. V. Obukhovskii. Localization of the method of guiding functions in the problem about periodic solutions of differential inclusions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 23-32. http://geodesic.mathdoc.fr/item/IVM_2009_5_a2/

[1] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966, 332 pp. | MR

[2] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 322 pp. | MR

[3] Krasnoselskii M. A., Perov A. I., “Ob odnom printsipe suschestvovaniya ogranichennykh, periodicheskikh i pochti-periodicheskikh reshenii u sistemy obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 12:2 (1958), 235–238 | MR

[4] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 216 pp.

[5] Deimling K., Multivalued differential equations, Walter de Gruyter, Berlin–New York, 1992, 260 pp. | MR | Zbl

[6] Górniewicz L., Topological fixed point theory of multivalued mappings, Kluwer Acad. Publ., Dordrecht–Boston–London, 1999, 399 pp. | MR | Zbl

[7] De Blasi F. S., Górniewicz L., Pianigiani G., “Topological degree and periodic solutions of differential inclusions”, Nonlinear Anal., 37 (1999), 217–245 | DOI | MR | Zbl

[8] Mawhin J., Ward James R., jr., “Guiding-like functions for periodic or bounded solutions of ordinary differential equations”, Discrete and continuous dynamical systems, 8:1 (2002), 39–54 | MR | Zbl

[9] Mawhin J., Thompson H. B., “Periodic or bounded solutions of Caratheodory systems of ordinary differential equations”, J. Dyn. Diff. Eq., 15:2–3 (2003), 327–334 | DOI | MR | Zbl

[10] Filippakis M., Gasinski L., Papageorgiou N. S., “Nonsmooth generalized guiding functions for periodic differential inclusions”, Nonlinear Diff. Eq. Appl., 13:1 (2006), 43–66 | DOI | MR | Zbl

[11] Kamenskii M., Obukhovskii V., Zecca P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Walter de Gruyter, Berlin–New York, 2001, 231 pp. | MR

[12] Mawhin J. L., Topological degree methods in nonlinear boundary value problems, CBMS Regional Conf. Ser. Math., 40, Amer. Math. Soc., Providence, RI, 1977 | MR

[13] Pruszko T., “A coincidence degree for $L$-compact convex-valued mappings and its application to the Picard problem for orientor fields”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27:11–12 (1979), 895–902 | MR | Zbl

[14] Pruszko T., “Topological degree methods in multi-valued boundary value problems”, Nonlinear Anal. Theory, Meth. and Appl., 5:9 (1981), 959–973 | DOI | MR

[15] Tarafdar E., Teo S. K., “On the existence of solutions of the equation $\mathcal Lx\in Nx$ and a coincidence degree theory”, J. Austral. Math. Soc. Ser. A, 28:2 (1979), 139–173 | DOI | MR | Zbl

[16] Kornev S. V., Obukhovskii V. V., “O nekotorykh variantakh teorii topologicheskoi stepeni dlya nevypukloznachnykh multiotobrazhenii”, Sb. tr. matem. fakulteta VGU, 8, Voronezh, 2004, 56–74

[17] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[18] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Magistr, M., 1998, 658 pp.

[19] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[20] Emelyanov S. V., Korovin S. K., Bobylev N. A., Bulatov A. V., Gomotopii ekstremalnykh zadach, Nauka, M., 2001, 350 pp. | MR

[21] Fonda A., “Guiding functions and periodic solutions to functional differential equations”, Proc. Amer. Math. Soc., 99:1 (1987), 79–85 | DOI | MR | Zbl

[22] Kornev S., Obukhovskii V., “On some developments of the method of integral guiding functions”, Functional Diff. Eq., 12:3–4 (2005), 303–310 | MR | Zbl