A nonstationary group pursuit problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear nonstationary problem of conflict interaction of controllable objects, where the number of pursuers equals $\nu$ and the number of runaways equals $\mu$. All participants are assumed to have equal dynamic abilities. The purpose of the pursuers is to catch all runaways, while the purpose of the latter is to avoid the catch by at least one of them. We establish sufficient conditions for the solvability of a local evasion problem.
Keywords: differential game, group pursuit, evasion problem.
@article{IVM_2009_5_a0,
     author = {A. S. Bannikov},
     title = {A nonstationary group pursuit problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_5_a0/}
}
TY  - JOUR
AU  - A. S. Bannikov
TI  - A nonstationary group pursuit problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 3
EP  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_5_a0/
LA  - ru
ID  - IVM_2009_5_a0
ER  - 
%0 Journal Article
%A A. S. Bannikov
%T A nonstationary group pursuit problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 3-12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_5_a0/
%G ru
%F IVM_2009_5_a0
A. S. Bannikov. A nonstationary group pursuit problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2009), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2009_5_a0/

[1] Chikrii A. A., Konfliktno-upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[2] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[3] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie (lineinaya teoriya), Vyssh. shkola, M., 2001, 240 pp.