An analog of the Tricomi problem with a~nonlocal integral conjugate condition
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the unique solvability of one analog of the Tricomi problem for an elliptic-hyperbolic equation with a nonlocal integral conjugate condition on the characteristic line.
Keywords: analog of the Tricomi problem, uniqueness.
Mots-clés : nonlocal conjugate condition, existence
@article{IVM_2009_4_a8,
     author = {E. R. Mansurova},
     title = {An analog of the {Tricomi} problem with a~nonlocal integral conjugate condition},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--66},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_4_a8/}
}
TY  - JOUR
AU  - E. R. Mansurova
TI  - An analog of the Tricomi problem with a~nonlocal integral conjugate condition
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 61
EP  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_4_a8/
LA  - ru
ID  - IVM_2009_4_a8
ER  - 
%0 Journal Article
%A E. R. Mansurova
%T An analog of the Tricomi problem with a~nonlocal integral conjugate condition
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 61-66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_4_a8/
%G ru
%F IVM_2009_4_a8
E. R. Mansurova. An analog of the Tricomi problem with a~nonlocal integral conjugate condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 61-66. http://geodesic.mathdoc.fr/item/IVM_2009_4_a8/

[1] Volkodavov V. F., Naumov O. Yu., “Dlya uravneniya smeshannogo tipa zadacha $\mathrm T$ s sopryazheniem spetsialnogo vida”, Neklassicheskie uravneniya matem. fiziki, In-t matem. SO RAN, Novosibirsk, 2002, 41–49 | Zbl

[2] Volkodavov V. F., Ilyushina Yu. A., “Dlya uravneniya smeshannogo tipa edinstvennost resheniya zadachi $\mathrm T$ s sopryazheniem proizvodnoi po normali s drobnoi proizvodnoi”, Izv. vuzov. Matematika, 2003, no. 9, 6–9 | MR | Zbl

[3] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1962, 767 pp. | MR

[4] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp. | MR | Zbl

[5] Krikunov Yu. M., Kraevye zadachi dlya modelnykh uravnenii smeshannogo tipa, Izd-vo Kazansk. un-ta, Kazan, 1986, 148 pp.

[6] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966, 292 pp. | MR

[7] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, OGIZ, Gostekhizdat, M.–L., 1951, 525 pp.

[8] Sabitov K. B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vysshaya shkola, M., 2005, 671 pp. | Zbl