The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed Cauchy problem in a~Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 56-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of the finite-difference methods for approximate solution of the ill-posed Cauchy problem for a homogeneous equation of the first order with a sectorial operator in a Banach space. We obtain the necessary and sufficient conditions for the qualified (with respect to the step of grid) uniform (on a segment) convergence of approximations to the exact solution of the problem. These conditions represent a priori data about the segment, where a solution exists, or about the sourcewise representation of a certain value of the desired solution.
Keywords: Cauchy problem, ill-posed problem, finite-difference approximation methods, sectorial condition, Banach space
Mots-clés : sourcewise representation.
@article{IVM_2009_4_a7,
     author = {V. V. Klyuchev},
     title = {The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed {Cauchy} problem in {a~Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--60},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_4_a7/}
}
TY  - JOUR
AU  - V. V. Klyuchev
TI  - The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed Cauchy problem in a~Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 56
EP  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_4_a7/
LA  - ru
ID  - IVM_2009_4_a7
ER  - 
%0 Journal Article
%A V. V. Klyuchev
%T The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed Cauchy problem in a~Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 56-60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_4_a7/
%G ru
%F IVM_2009_4_a7
V. V. Klyuchev. The necessary and sufficient conditions for the qualified convergence of difference methods for approximate solution of the ill-posed Cauchy problem in a~Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 56-60. http://geodesic.mathdoc.fr/item/IVM_2009_4_a7/

[1] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[2] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995, 176 pp. | MR

[3] Bakhvalov N. C., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987, 600 pp. | MR | Zbl

[4] Babushka I., Vitasek E., Prager M., Chislennye protsessy resheniya differentsialnykh uravnenii, Mir, M., 1969, 368 pp. | MR | Zbl

[5] Bakushinskii A. B., “Raznostnye metody resheniya nekorrektnykh zadach Koshi dlya evolyutsionnykh uravnenii v kompleksnom $B$-prostranstve”, Differents. uravneniya, 8:9 (1972), 1661–1668

[6] Bakushinskii A. B., Kokurin M. Yu., Klyuchev V. V., “Ob otsenke skorosti skhodimosti i pogreshnosti raznostnykh metodov approksimatsii resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Vychisl. metody i programmirov., 7 (2006), 163–171

[7] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR