Wave solutions admitting elliptic helices to Maxwell equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 77-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct representatives of the class $W_{1,2}$ of electromagnetic waves that admit an one-dimensional group of elliptic helices for various values of parameters.
Keywords: Poincaré group, Maxwell equations, Maxwell space, electromagnetic wave.
@article{IVM_2009_4_a11,
     author = {M. A. Parinov},
     title = {Wave solutions admitting elliptic helices to {Maxwell} equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--81},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_4_a11/}
}
TY  - JOUR
AU  - M. A. Parinov
TI  - Wave solutions admitting elliptic helices to Maxwell equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 77
EP  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_4_a11/
LA  - ru
ID  - IVM_2009_4_a11
ER  - 
%0 Journal Article
%A M. A. Parinov
%T Wave solutions admitting elliptic helices to Maxwell equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 77-81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_4_a11/
%G ru
%F IVM_2009_4_a11
M. A. Parinov. Wave solutions admitting elliptic helices to Maxwell equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2009), pp. 77-81. http://geodesic.mathdoc.fr/item/IVM_2009_4_a11/

[1] Parinov M. A., Prostranstva Einshteina–Maksvella i uravneniya Lorentsa, Izd-vo IvGU, Ivanovo, 2003, 180 pp.

[2] Ivanova A. S., Parinov M. A., “Pervye integraly uravnenii Lorentsa dlya nekotorykh klassov elektromagnitnykh polei”, Tr. MIAN, 236, Nauka, M., 2002, 197–203 | MR | Zbl

[3] Parinov M. A., “Klassy prostranstv Maksvella, dopuskayuschikh podgruppy gruppy Puankare”, Fundament. i prikl. matem., 10:1 (2004), 183–237 | MR | Zbl

[4] Parinov M. A., “Shest klassov prostranstv Maksvella, dopuskayuschikh netrivialnye gruppy simmetrii”, Vestn. Voronezhsk. gos. un-ta. Ser. fizika, matem., 2006, no. 1, 170–171

[5] Belko I. V., “Podgruppy gruppy Lorentsa–Puankare”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1971, no. 1, 5–13 | MR

[6] Ivanova A. S., “Gruppovaya klassifikatsiya elektromagnitnykh voln, dopuskayuschikh smeschenie po odnoi iz prostranstvennykh koordinat”, Nauch. tr. Ivanov. gos. un-ta. Matem., 2, 1999, 50–62

[7] Ivanova A. S., “Gruppovaya klassifikatsiya elektromagnitnykh voln, dopuskayuschikh ellipticheskie vinty”, Matem. i ee prilozh. (Ivanovo), 1 (2004), 51–62

[8] Ivanova A. S., “Elektromagnitnye volny, dopuskayuschie translyatsii v izotropnom napravlenii”, Fundament. i prikl. matem., 10:1 (2004), 49–56 | MR | Zbl

[9] Ivanova A. S., “Gruppovaya klassifikatsiya elektromagnitnykh voln, dopuskayuschikh giperbolicheskie vinty”, Matem. i ee prilozh. (Ivanovo), 2 (2005), 61–72

[10] Ivanova A. S., “Shest klassov elektpomagnitnykh voln, dopuskayuschikh parabolicheskie vinty”, Matem. i ee prilozh. (Ivanovo), 3 (2006), 17–22

[11] Ivanova A. S., Parinov M. A., “Nekotorye klassy elektromagnitnykh voln, dopuskayuschikh parabolicheskie vinty”, Fundament. i prikl. matem., 12:7 (2006), 79–92 | MR

[12] Landau L. D., Lifshits E. M., Teopiya polya, 5-e izd., Nauka, M., 1967, 460 pp. | Zbl

[13] Parinov M. A., “Ob odnom sposobe polucheniya predstavitelei klassov prostranstv Maksvella”, Sovrem. matem. i ee prilozh., 38 (2005), 76–81

[14] Parinov M. A., “Klassifikatsiya potentsialnykh struktur na prostranstve Minkovskogo po podgruppam gruppy Puankare”, Fundament. i prikl. matem., 12:7 (2006), 177–225 | MR