Integration of the sine-Gordon equation with a~self-consistent source of the integral type in the case of multiple eigenvalues
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2009), pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to the evolution of the scattering data for a Dirac-type nonself-adjoint operator with multiple eigenvalues whose potential is a solution of the sine-Gordon equation with a self-consistent source of the integral type.
Mots-clés : sine-Gordon equation
Keywords: self-consistent source, Dirac-type operator, multiple eigenvalues, scattering data, inverse scattering method.
@article{IVM_2009_3_a2,
     author = {A. B. Khasanov and G. U. Urazboev},
     title = {Integration of the {sine-Gordon} equation with a~self-consistent source of the integral type in the case of multiple eigenvalues},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--66},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_3_a2/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - G. U. Urazboev
TI  - Integration of the sine-Gordon equation with a~self-consistent source of the integral type in the case of multiple eigenvalues
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 55
EP  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_3_a2/
LA  - ru
ID  - IVM_2009_3_a2
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A G. U. Urazboev
%T Integration of the sine-Gordon equation with a~self-consistent source of the integral type in the case of multiple eigenvalues
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 55-66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_3_a2/
%G ru
%F IVM_2009_3_a2
A. B. Khasanov; G. U. Urazboev. Integration of the sine-Gordon equation with a~self-consistent source of the integral type in the case of multiple eigenvalues. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2009), pp. 55-66. http://geodesic.mathdoc.fr/item/IVM_2009_3_a2/

[1] Zakharov V. E., Takhtadzhyan L. A., Faddeev L. D., “Polnoe opisanie reshenii "$\mathrm{sine}$-Gordon" uravneniya”, DAN SSSR, 219:6 (1974), 1334–1337 | MR | Zbl

[2] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “Method for solving the $\mathrm{sine}$-Gordon equation”, Phys. Rev. Lett., 30 (1973), 1262–1264 | DOI | MR

[3] Khasanov A. B, Urazboev G. U., “On the $\mathrm{sine}$-Gordon equation with a self-consistent sourse of integral type”, Zhurn. matem. fiz., analiza i geometrii, 2:3 (2006), 287–298 | MR | Zbl

[4] Mel'nikov V. K., “Exact solutions of the Korteweg–de Vries equation with a self-consistent source”, Phys. Lett. A, 128 (1988), 488–492 | DOI | MR

[5] Khasanov A. B., Urazboev G. U., “Integrirovanie obschego uravneniya KdF s pravoi chastyu v klasse bystroubyvayuschikh funktsii”, Uzb. matem. zhurnal, 2003, no. 2, 53–59 | MR

[6] Mel'nikov V. K., “Integration of the nonlinear Schrödinger equation with a source”, Inverse Probl., 8 (1992), 133–147 | DOI | MR

[7] Lyantse V. E., “Nesamosopryazhennyi differentsialnyi operator vtorogo poryadka na poluosi”, Dobavlenie k kn.: Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 | MR

[8] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[9] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986, 529 pp. | MR | Zbl

[10] Khasanov A. B., “Obratnaya zadacha teorii rasseyaniya dlya sistemy dvukh nesamosopryazhennykh differentsialnykh uravnenii pervogo poryadka”, DAN SSSR, 277:3 (1984), 559–562 | MR | Zbl

[11] Da-Jun Zhang, Deng-Yuan Chen, “The $N$-soliton solutions of the $\mathrm{sine}$-Gordon equation with self-consistent sources”, Physica A, 321 (2003), 467–481 | DOI | MR

[12] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp. | MR

[13] Karpman V. I., Maslov E. M., “Perturbation theory for solitons”, Soviet Phys. JETP, 46:2 (1977), 537–559 | MR

[14] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987, 480 pp. | MR

[15] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 1-e izd., Nauka, M., 1967, 436 pp. | MR