Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_3_a0, author = {L. N. Shevrin and B. M. Vernikov and M. V. Volkov}, title = {Lattices of semigroup varieties}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--36}, publisher = {mathdoc}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_3_a0/} }
L. N. Shevrin; B. M. Vernikov; M. V. Volkov. Lattices of semigroup varieties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2009), pp. 3-36. http://geodesic.mathdoc.fr/item/IVM_2009_3_a0/
[1] Aizenshtat A. Ya., “O pokrytiyakh v reshetke mnogoobrazii polugrupp”, Sovrem. analiz i geometriya, Leningr. gos. pedagogich. in-t, L., 1972, 3–11
[2] Aizenshtat A. Ya., “O nekotorykh podreshetkakh reshetki mnogoobrazii polugrupp”, Sovrem. algebra, 1, Leningr. gos. pedagogich. in-t, L., 1974, 3–15
[3] Aizenshtat A. Ya., Boguta B. K., “O reshetke mnogoobrazii polugrupp”, Polugruppovye mnogoobraziya i polugruppy endomorfizmov, Leningr. gos. pedagogich. in-t, L., 1979, 3–46 | MR
[4] Artamonov V. A., “Tsepnye mnogoobraziya grupp”, Tr. seminara im. I. G. Petrovskogo, 3, 1978, 3–8 | MR | Zbl
[5] Biryukov A. P., “Mnogoobraziya idempotentnykh polugrupp”, Algebra i logika, 9:3 (1970), 255–273 | Zbl
[6] Boguta B. K., “Pokrytiya mnogoobrazii, opredelyaemykh odnim tozhdestvom”, Sovrem. algebra, Leningr. gos. pedagogich. in-t, L., 1978, 24–28 | Zbl
[7] Vernikov B. M., “O mnogoobraziyakh polugrupp, reshetka podmnogoobrazii kotorykh razlozhima v pryamoe proizvedenie”, Algebraich. sistemy i ikh mnogoobraziya, Uralsk. gos. un-t, Sverdlovsk, 1988, 41–52 | MR
[8] Vernikov B. M., “Kvazitsepnye mnogoobraziya polugrupp”, Issled. algebraich. sistem, Uralsk. gos. un-t, Sverdlovsk, 1989, 31–36 | MR
[9] Vernikov B. M., “Spetsialnye elementy reshetki nadkommutativnykh mnogoobrazii polugrupp”, Matem. zametki, 70:5 (2001), 670–678 | MR | Zbl
[10] Vernikov B. M., “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: zapreschennye podmnogoobraziya”, Izv. Uralsk. gos. un-ta, 2002, no. 22 (Matem., mekhan., No 4), 16–42 | MR | Zbl
[11] Vernikov B. M., “Ob odnom oslablennom variante kongruents-perestanovochnosti dlya mnogoobrazii polugrupp”, Algebra i logika, 43:1 (2004), 3–31 | MR | Zbl
[12] Vernikov B. M., “Mnogoobraziya polugrupp, na svobodnykh ob'ektakh kotorykh pochti vse vpolne invariantnye kongruentsii 1.5-perestanovochny”, Izv. Uralsk. gos. un-ta, 2005, no. 36 (Matem., mekhan., No 7), 95–106 | MR
[13] Vernikov B. M., “Kvazitozhdestva v modulyarnykh reshetkakh mnogoobrazii polugrupp”, Izv. Uralsk. gos. un-ta, 2005, no. 38 (Matem., mekhan., No 8), 5–35
[14] Vernikov B. M., Volkov M. V., “Dopolneniya v reshetkakh mnogoobrazii i kvazimnogoobrazii”, Izv. vuzov. Matematika, 1982, no. 11, 17–20 | MR | Zbl
[15] Vernikov B. M., Volkov M. V., “Reshetki nilpotentnykh mnogoobrazii polugrupp”, Algebraich. sistemy i ikh mnogoobraziya, Uralsk. gos. un-t, Sverdlovsk, 1988, 53–65 | MR
[16] Vernikov B. M., Volkov M. V., “Reshetki nilpotentnykh mnogoobrazii polugrupp. II”, Izv. Uralsk. gos. un-ta, 1998, no. 10 (Matem., mekhan., No 1), 13–33 | MR | Zbl
[17] Vernikov B. M., Volkov M. V., “Stroenie reshetok mnogoobrazii nilpolugrupp”, Izv. Uralsk. gos. un-ta, 2001, no. 18 (Matem., mekhan., No 3), 34–52
[18] Vernikov B. M., Volkov M.V., “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: zavershenie opisaniya”, Izv. Uralsk. gos. un-ta, 2004, no. 30 (Matem., mekhan., No 6), 5–36 | MR | Zbl
[19] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Izv. vuzov. Matematika, 1989, no. 6, 51–60 | MR
[20] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii. II”, Izv. vuzov. Matematika, 1992, no. 7, 3–8 | MR | Zbl
[21] Volkov M. V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii. III”, Izv. vuzov. Matematika, 1992, no. 8, 21–29 | MR | Zbl
[22] Volkov M. V., Tozhdestva v reshetkakh mnogoobrazii polugrupp, Dis. $\dots$ dokt. fiz.-matem. nauk, Ekaterinburg, 1994
[23] Volkov M. V., “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: tozhdestva”, Izv. Uralsk. gos. un-ta, 2002, no. 22 (Matem., mekhan., No 4), 43–61 | MR | Zbl
[24] Golubov E. A., Sapir M. V., “Mnogoobraziya finitno approksimiruemykh polugrupp”, Izv. vuzov. Matematika, 1982, no. 11, 21–29 | MR | Zbl
[25] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp. | MR
[26] Zimin A. I., “Blokiruyuschie mnozhestva termov”, Matem. sb., 119(161):3 (1982), 363–375 | MR | Zbl
[27] Kleiman E. I., “Nekotorye svoistva struktury mnogoobrazii inversnykh polugrupp”, Issled. po sovrem. algebre, Uralsk. gos. un-t, Sverdlovsk, 1977, 56–72 | MR
[28] Kleiman E. I., “Ob uslovii pokrytiya v reshetke mnogoobrazii inversnykh polugrupp”, Issled. algebraich. sistem po svoistvam ikh podsistem, Uralsk. gos. un-t, Sverdlovsk, 1980, 76–91 | MR
[29] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, T. 1, Mir, M., 1972, 288 pp. ; Т. 2, 424 с. | Zbl
[30] Kozhevnikov P. A., Mnogoobraziya grupp prostogo perioda i tozhdestva s vysokimi stepenyami, Dis. $\dots$ kand. fiz.-matem. nauk, M., 2000
[31] Kozhevnikov P. A., O mnogoobraziyakh grupp bolshogo nechetnogo perioda, Dep. v VINITI 1612-V00, 2000
[32] Malyshev S. A., “O perestanovochnykh mnogoobraziyakh polugrupp, reshetka podmnogoobrazii kotorykh konechna”, Sovrem. algebra. Polugruppovye konstruktsii, Leningr. gos. pedagogich. in-t, L., 1981, 71–76 | MR | Zbl
[33] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR
[34] Melnik I. I., “Ob odnom semeistve mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 1971, no. 12, 103–108 | MR
[35] Melnik I. I., “Opisanie nekotorykh reshetok mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 1972, no. 7, 65–74 | MR
[36] L. A. Skornyakov (red.), Obschaya algebra, T. 1, Nauka, M., 1990, 592 pp. ; Т. 2, 1991, 479 с. | Zbl
[37] Popov V. Yu., “O nezavisimoi baziruemosti mnogoobrazii polugrupp”, Algebra i logika, 44:1 (2005), 81–96 | MR | Zbl
[38] Rasin V. V., “Mnogoobraziya ortodoksalnykh kliffordovykh polugrupp”, Izv. vuzov. Matematika, 1982, no. 11, 82–85 | MR | Zbl
[39] Sapir M. V., Sukhanov E. V., “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. vuzov. Matematika, 1981, no. 4, 48–55 | MR | Zbl
[40] L. N. Shevrina (red.), Sverdlovskaya tetrad. Nereshennye zadachi teorii polugrupp, 2-e izd., Uralsk. gos. un-t, Sverdlovsk, 1979, 41 pp.
[41] Sukhanov E. V., “Pochti lineinye mnogoobraziya polugrupp”, Matem. zametki, 32:4 (1982), 469–476 | MR | Zbl
[42] Sukhanov E. V., “Mnogoobraziya polugrupp shiriny 2”, Issled. algebraich. sistem po svoistvam ikh podsistem, Uralsk. gos. un-t, Sverdlovsk, 1985, 148–152 | MR
[43] Trakhtman A. N., “O pokryvayuschikh elementakh v strukture mnogoobrazii algebr”, Matem. zametki, 15:2 (1974), 307–312 | Zbl
[44] Trakhtman A. N., “Mnogoobrazie polugrupp bez neprivodimogo bazisa tozhdestv”, Matem. zametki, 21:6 (1977), 865–872 | MR | Zbl
[45] Shevrin L. N., “K teorii epigrupp. I”, Matem. sb., 185:8 (1994), 129–160 | MR | Zbl
[46] Shevrin L. N., Volkov M. V., “Tozhdestva polugrupp”, Izv. vuzov. Matematika, 1985, no. 11, 3–47 | MR | Zbl
[47] Shevrin L. N., Sukhanov E. V., “Strukturnye aspekty teorii mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 1989, no. 6, 3–39 | MR | Zbl
[48] Aǐzenštat A. Ya., “On varieties of semigroups having a finite number of subvarieties”, Algebraic Theory of Semigroups, Colloq. Math. Soc. János Bolyai, 20, North-Holland Publ. Company, Amsterdam, 1979, 33–41 | MR
[49] Almeida J., “Some order properties of the lattice of varieties of commutative semigroups”, Canad. J. Math., 38:1 (1986), 19–47 | MR | Zbl
[50] Auinger K., “Complete congruences on lattices of (existence) varieties”, Semigroups, Automata and Languages, eds. J. Almeida, G. M. S. Gomes, P. V. Silva, World Scientific, Singapore, 1996, 1–10 | MR | Zbl
[51] Burris S., Nelson E., “Embedding the dual of $\Pi_\infty$ in the lattice of equational classes of semigroups”, Algebra Universalis, 1:2 (1971), 248–254 | DOI | MR
[52] Burris S., Nelson E., “Embedding the dual of $\Pi_m$ in the lattice of equational classes of commutative semigroups”, Proc. Amer. Math. Soc., 30:2 (1971), 37–39 | DOI | MR | Zbl
[53] Clifford A. H., “The free completely regular semigroup on a set”, J. Algebra, 59 (1979), 434–451 | DOI | MR | Zbl
[54] Dierks V., Erne M., Reinhold J., “Complements in lattices of varieties and equational theories”, Algebra Universalis, 31:4 (1994), 506–515 | DOI | MR
[55] Evans T., “The lattice of semigroup varieties”, Semigroup Forum, 2:1 (1971), 1–43 | DOI | MR | Zbl
[56] Fennemore C. F., “All varieties of bands. I”, Math. Nachr., 48:1–6 (1971), 237–252 ; “All varieties of bands. II”, 253–262 | DOI | MR | Zbl | Zbl
[57] Gerhard J. A., “The lattice of equational classes of idempotent semigroups”, J. Algebra, 15:2 (1970), 195–224 | DOI | MR | Zbl
[58] Gerhard J. A., “Semigroups with an idempotent power. II. The lattice of equational subclasses of $[(xy)^2=xy]$”, Semigroup Forum, 14:4 (1977), 375–388 | DOI | MR | Zbl
[59] Gerhard J. A., Petrich M., “Varieties of bands revisited”, Proc. London Math. Soc. (3), 58:2 (1989), 323–350 | DOI | MR | Zbl
[60] Grech M., “Irreducible varieties of commutative semigroups”, J. Algebra, 261:1 (2003), 207–228 | DOI | MR | Zbl
[61] Grech M., “Well- and better-quasi-ordering in the lattice of varieties of commutative semigroups”, Int. J. Algebra and Comput., 17:4 (2007), 869–879 | DOI | MR | Zbl
[62] Grech M., “Automorphisms of the lattice of equational theories of commutative semigroups”, Trans. Amer. Math. Soc., accepted
[63] Grech M., Kisielewicz A., “Covering relation for equational theories of commutative semigroups”, J. Algebra, 232:2 (2000), 493–506 | DOI | MR | Zbl
[64] Grillet P. A., “Fully invarant congruences on free commutative semigroups”, Acta Sci. Math. (Szeged), 67:3–4 (2001), 571–600 | MR | Zbl
[65] Hofmann K. H., Mostert P., Elements of Compact Semigroups, Charles E. Merill Books, Columbus, Ohio, 1966, 384 pp. | MR | Zbl
[66] Ježek J., “Intervals in lattices of varieties”, Algebra Universalis, 6:2 (1976), 147–158 | MR
[67] Ježek J., “The lattice of equational theories. Part I: modular elements”, Czechosl. Math. J., 31:1 (1981), 127–152 | MR
[68] Ježek J., McKenzie R. N., “Definability in the lattice of equational theories of semigroups”, Semigroup Forum, 46:2 (1993), 199–245 | MR
[69] Ka'ourek J., “Uncountably many varieties of semigroups satisfying $x^2y\bumpeq xy$”, Semigroup Forum, 60:1 (2000), 135–152 | DOI | MR
[70] Ka'ourek J., “Uncountably many varieties of completely simple semigroups with metabelian subgroups”, Glasgow Math. J., 48:3 (2006), 365–410 | DOI | MR
[71] Kalicki J., Scott D., “Equationally completeness in abstract algebras”, Proc. Konikl. Nederl. Akad. Wetensch. Ser. A, 58:17 (1955), 650–659 | MR | Zbl
[72] Kharlampovich O. G., Sapir M. V., “Algorithmic problems in varieties”, Int. J. Algebra and Comput., 5:4–5 (1995), 379–602 | DOI | MR | Zbl
[73] Kisielewicz A., “Varieties of commutative semigroups”, Trans. Amer. Math. Soc., 342:1 (1994), 275–306 | DOI | MR | Zbl
[74] Kisielewicz A., “Definability in the lattice of equational theories of commutative semigroups”, Trans. Amer. Math. Soc., 356:9 (2004), 3483–3504 | DOI | MR | Zbl
[75] Kopamu S. J. L., “Varieties of structurally trivial semigroups. I”, Semigroup Forum, 58:2 (1999), 159–174 | DOI | MR | Zbl
[76] Kopamu S. J. L., “Varieties of structurally trivial semigroups. II”, Semigroup Forum, 66:3 (2003), 401–415 | DOI | MR | Zbl
[77] Kopamu S. J. L., “Varieties and nilpotent extensions of permutative periodic semigroups”, Semigroup Forum, 69:2 (2004), 255–280 | DOI | MR | Zbl
[78] Korjakov I. O., “A sketch of the lattice of commutative nilpotent semigroup varieties”, Semigroup Forum, 24:1 (1982), 285–317 | DOI | MR | Zbl
[79] Kublanovsky S. I., Lee E. W. H., Reilly N. R., “Some conditions related to the exactness of Rees Sushkevich varieties”, Semigroup Forum, 76:1 (2008), 87–94 | DOI | MR | Zbl
[80] Lee E. W. H., On the lattice of Rees Sushkevich varieties, Ph. D. Thesis, Simon Fraser Univ., 2002 | MR
[81] Lee E. W. H., “Identity bases for some non-exact varieties”, Semigroup Forum, 68:3 (2004), 445–457 | DOI | MR | Zbl
[82] Lee E. W. H., “Subvarieties of the variety generated by the five-element Brandt semigroup”, Int. J. Algebra and Comput., 16:2 (2006), 417–441 | DOI | MR | Zbl
[83] Lee E. W. H., “Minimal semigroups generating varieties with complex subvariety lattices”, Int. J. Algebra and Comput., 17:8 (2007), 1553–1572 ; “corrigendum: ibid.”, 18:6 (2008), 1099–1100 | DOI | MR | Zbl | DOI | MR | Zbl
[84] Lee E. W. H., “On the variety generated by some monoid of order five”, Acta Sci. Math. (Szeged), 74:3–4 (2008), 507–535
[85] Lee E. W. H., “Combinatorial Rees Sushkevich varieties are finitely based”, Int. J. Algebra and Comput., 18:5 (2008), 957–978 | DOI | MR | Zbl
[86] Lee E. W. H., Reilly N. R., “Centrality in Rees-Sushkevich varieties”, Algebra Universalis, 58:2 (2008), 145–180 | DOI | MR | Zbl
[87] Lee E. W. H., Volkov M. V., “On the structure of the lattice of combinatorial Rees Sushkevich varieties”, Proc. Int. Conf. Semigroups and Formal Languages, eds. J. M. André, M. J. J. Branco, V. H. Fernandes, J. Fountain, G. M. S. Gomes, J. C. Meakin, World Scientific, Singapore, 2007, 164–187 | MR | Zbl
[88] McKenzie R. N., McNulty G. F., Taylor W. F., Algebras. Lattices. Varieties, V. I, Wadsworth Brooks/Cole, Monterey, 1987, 361 pp. | Zbl
[89] Monzo R. A. R., “Pre-complete almost endomorphisms and semigroups whose cube is a band”, Semigroup Forum, 67:3 (2003), 355–372 | DOI | MR | Zbl
[90] Nelson E., “The lattice of equational classes of commutative semigroups”, Canad. J. Math., 23:5 (1971), 875–895 | MR | Zbl
[91] Pastijn F. J., “The lattice of completely regular semigroup varieties”, J. Austral. Math. Soc. Ser. A, 49:1 (1990), 24–42 | DOI | MR | Zbl
[92] Pastijn F. J., “Commuting fully invariant congruences on free completely regular semigroups”, Trans. Amer. Math. Soc., 323:1 (1991), 79–92 | DOI | MR | Zbl
[93] Pastijn F. J., “The idempotents in a periodic semigroup”, Int. J. Algebra and Comput., 6:5 (1996), 511–540 | DOI | MR | Zbl
[94] Pastijn F. J., Trotter P. G., “Complete congruences on lattices of varieties and of pseudovarieties”, Int. J. Algebra and Comput., 8:2 (1998), 171–201 | DOI | MR | Zbl
[95] Perkins P., “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl
[96] Petrich M., “All subvarieties of a certain variety of semigroups”, Semigroup Forum, 7:1–4 (1974), 104–152 | DOI | MR | Zbl
[97] Petrich M., Inverse Semigroups, Wiley Interscience, New York, 1984, 674 pp. | MR | Zbl
[98] Petrich M., “Characterizations of certain completely regular varieties”, Semigroup Forum, 66:3 (2003), 381–400 | DOI | MR | Zbl
[99] Petrich M., Reilly N. R., “The modularity of the lattice of varieties of completely regular semigroups and related representations”, Glasgow Math. J., 32:2 (1990), 137–152 | DOI | MR | Zbl
[100] Petrich M., Reilly N. R., “Operators related to idempotent generated and monoid completely regular semigroups”, J. Austral. Math. Soc. Ser. A, 49:1 (1990), 1–23 | DOI | MR | Zbl
[101] Petrich M., Reilly N. R., “Operators related to E-disjunctive and fundamental completely regular semigroups”, J. Algebra, 134:1 (1990), 1–27 | DOI | MR | Zbl
[102] Petrich M., Reilly N. R., Completely Regular Semigroups, John Wiley Sons, New York, 1999, 481 pp. | MR
[103] Polák L., “On varieties of completely regular semigroups. I”, Semigroup Forum, 32:1 (1985), 97–123 | DOI | MR | Zbl
[104] Polák L., “On varieties of completely regular semigroups. II”, Semigroup Forum, 36:3 (1987), 253–284 | DOI | MR
[105] Polák L., “On varieties of completely regular semigroups. III”, Semigroup Forum, 37:1 (1988), 1–30 | DOI | MR | Zbl
[106] Pollák Gy., “On the consequences of permutation identities”, Acta Sci. Math. (Szeged), 34 (1973), 323–333 | MR | Zbl
[107] Pollák Gy., “Some lattices of varieties containing elements without cover”, Quad. Ric. Sci., 109 (1981), 91–96 | MR | Zbl
[108] Pollák Gy., “A new example of a limit variety”, Semigroup Forum, 38:1 (1989), 283–303 | DOI | MR | Zbl
[109] Pudlák P., Tu̇ma J., “Every finite lattice can be embedded in a finite partition lattice”, Algebra Universalis, 10:1 (1980), 74–95 | DOI | MR | Zbl
[110] Reilly N. R., “Modular sublattices of the lattice of varieties of inverse semigroups”, Pacific J. Math., 89:2 (1980), 405–417 | MR | Zbl
[111] Reilly N. R., “Complete congruences on the lattice of Rees Sushkevich varieties”, Commun. Algebra, 35:11 (2007), 3624–3659 | DOI | MR | Zbl
[112] Reilly N. R., “The interval $[\mathbf B_2,\mathbf{NB}_2]$ in the lattice of Rees Sushkevich varieties”, Algebra Universalis, 59:3–4 (2008), 345–363 | DOI | MR
[113] Reilly N. R., “Shades of orthodoxy in Rees Sushkevich varieties”, Semigroup Forum, accepted
[114] Sapir M. V., “On Cross semigroup varieties and related questions”, Semigroup Forum, 42:1 (1991), 345–364 | DOI | MR | Zbl
[115] Schwabauer R., “Commutative semigroup laws”, Proc. Amer. Math. Soc., 22:3 (1969), 591–595 | DOI | MR
[116] Shevrin L. N., “Epigroups”, Structural Theory of Automata, Semigroups, and Universal Algebra, eds. V. B. Kudryavtsev, I. G. Rosenberg, Springer, Dordrecht, 2005, 331–380 | MR
[117] Shevrin L. N., Ovsyannikov A. J., Semigroups and Their Subsemigroup Lattices, Kluwer Academic Publ., Dordrecht–Boston–London, 1996, 380 pp. | MR | Zbl
[118] A. V. Mikhalev, G. F. Pilz, The Concise Handbook of Algebra, Kluwer Academic Publ., Dordrecht–Boston–London, 2002, 618 pp. | MR | Zbl
[119] Vernikov B. M., “Dualities in lattices of semigroup varieties”, Semigroup Forum, 40:1 (1990), 59–76 | DOI | MR | Zbl
[120] Vernikov B. M., “On congruences of $G$-sets”, Comment. Math. Univ. Carol., 38:3 (1997), 603–613 | MR | Zbl
[121] Vernikov B. M., “Distributivity, modularity, and related conditions in lattices of overcommutative semigroup varieties”, Semigroups with Appl., Including Semigroup Rings, eds. S. Kublanovsky, A. Mikhalev, P. Higgins, J. Ponizovskii, St.-Petersburg State Technical University, St.-Petersburg, 1999, 411–439 | Zbl
[122] Vernikov B. M., “Modular elements in congruence lattices of $G$-sets”, Beiträge zur Algebra und Geometrie, 41:1 (2000), 85–92 | MR | Zbl
[123] Vernikov B. M., “Semidistributive law and other quasi-identities in lattices of semigroup varieties”, Proc. Steklov Inst. Math., Suppl. 2, 2001, S241–S256 | MR | Zbl
[124] Vernikov B. M., “Semigroup varieties with 1.5-permutable fully invariant congruences on their free objects”, Acta Appl. Math., 85:1–3 (2005), 313–318 | DOI | MR | Zbl
[125] Vernikov B. M., “On modular elements of the lattice of semigroup varieties”, Comment. Math. Univ. Carol., 48:4 (2007), 595–606 | MR
[126] Vernikov B. M., “Lower-modular elements of the lattice of semigroup varieties”, Semigroup Forum, 75:3 (2007), 554–566 | DOI | MR
[127] Vernikov B. M., “Lower-modular elements of the lattice of semigroup varieties. II”, Acta Sci. Math. (Szeged), 74:3–4 (2008), 537–554
[128] Vernikov B. M., “Upper-modular elements of the lattice of semigroup varieties”, Algebra Universalis, 59:3–4 (2008), 405–428 | DOI
[129] Vernikov B. M., Volkov M. V., “Permutability of fully invariant congruences on relatively free semigroups”, Acta Sci. Math. (Szeged), 63:3–4 (1997), 437–461 | MR | Zbl
[130] Vernikov B. M., Volkov M. V., “Commuting fully invariant congruences on free semigroups”, Contrib. General Algebra, 12 (2000), 391–417 | MR | Zbl
[131] Vernikov B. M., Volkov M. V., “Modular elements of the lattice of semigroup varieties. II”, Contrib. General Algebra, 17 (2006), 173–190 | MR | Zbl
[132] Volkov M. V., “An example of a limit variety of semigroups”, Semigroup Forum, 24:1 (1982), 319–326 | DOI | MR | Zbl
[133] Volkov M. V., “On the join of semigroup varieties”, Contrib. General Algebra, 2 (1983), 365–373 | MR | Zbl
[134] Volkov M. V., “On the join of varieties”, Simon Stevin, 58:4 (1984), 311–317 | MR | Zbl
[135] Volkov M. V., “Commutative semigroup varieties with distributive subvariety lattices”, Contrib. General Algebra, 7 (1991), 351–359 | MR | Zbl
[136] Volkov M. V., “Semigroup varieties with commuting fully invariant congruences on free objects”, Contemp. Math., 131, Part 3 (1992), 295–316 | MR | Zbl
[137] Volkov M. V., “Young diagrams and the structure of the lattice of overcommutative semigroup varieties”, Transformation Semigroups, Proc. Int. Conf. Held at the Univ. Essex, ed. P. M. Higgins, University of Essex, Colchester, 1994, 99–110 | Zbl
[138] Volkov M. V., “Covers in the lattices of semigroup varieties and pseudovarieties”, Semigroups, Automata and Languages, eds. J. Almeida, G. M. S. Gomes, P. V. Silva, World Scientific, Singapore, 1996, 263–280 | MR | Zbl
[139] Volkov M. V., “The finite basis problem for finite semigroups”, Sci. Math. Jpn., 53:1 (2001), 171–199 | MR | Zbl
[140] Volkov M. V., “György Pollák's work on the theory of semigroup varieties: its significance and its influence so far”, Acta Sci. Math. (Szeged), 68:3–4 (2002), 875–894 | MR
[141] Volkov M. V., “Modular elements of the lattice of semigroup varieties”, Contrib. General Algebra, 16 (2005), 275–288 | MR | Zbl
[142] Volkov M. V., “On a question by Edmond W. H. Lee”, Izv. Uralsk. gos. un-ta, 2005, no. 36 (Matem., mekhan., No 7), 167–178 | MR
[143] Volkov M. V., Ershova T. A., “The lattice of varieties of semigroups with completely regular square”, Monash Conf. on Semigroup Theory in Honour of G. B. Preston, eds. T. E. Hall, P. R. Jones, J. C. Meakin, World Scientific, Singapore, 1991, 306–322 | MR | Zbl
[144] Zhang W. T., Luo Y. F., “On varieties generated by minimal complex semigroups”, Order, 25:3 (2008), 243–266 | DOI | MR | Zbl