The operad of finite labeled tournaments
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2009), pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the operad of finite labeled tournaments. We describe the structure of suboperads of this operad generated by simple tournaments. We prove that a suboperad generated by a tournament with two vertices (i.e., the operad of finite linearly ordered sets) is isomorphic to the operad of symmetric groups, and a suboperad generated by a simple tournament with more that two vertices is isomorphic to the quotient operad of the free operad with respect to a certain congruence. We obtain this congruence explicitly.
Keywords: operad, tournament.
@article{IVM_2009_2_a4,
     author = {S. N. Tronin and L. T. Abdulmyanova},
     title = {The operad of finite labeled tournaments},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--75},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_2_a4/}
}
TY  - JOUR
AU  - S. N. Tronin
AU  - L. T. Abdulmyanova
TI  - The operad of finite labeled tournaments
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 65
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_2_a4/
LA  - ru
ID  - IVM_2009_2_a4
ER  - 
%0 Journal Article
%A S. N. Tronin
%A L. T. Abdulmyanova
%T The operad of finite labeled tournaments
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 65-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_2_a4/
%G ru
%F IVM_2009_2_a4
S. N. Tronin; L. T. Abdulmyanova. The operad of finite labeled tournaments. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2009), pp. 65-75. http://geodesic.mathdoc.fr/item/IVM_2009_2_a4/

[1] Tronin S. N., Semenova A. V., “Operady konechnykh pomechennykh grafov”, Izv. vuzov. Matematika, 2004, no. 4, 50–60 | MR | Zbl

[2] Boudabbous Y., Dammak J., Ille P., “Indecomposability and duality of tournaments”, Discr. Math., 223:1 (2000), 55–82 | DOI | MR | Zbl

[3] Mun Dzh. V., “Vlozhenie turnirov v prostye turniry”, Teoriya grafov. Pokrytiya, ukladki, turniry, Mir, M., 1974, 169–174

[4] Tronin S. N., Gareeva L. D., “O nekotorykh operadakh, svyazannykh s operadoi simmetricheskikh grupp. I”, Izv. vuzov. Matematika, 2004, no. 9, 61–72 | MR

[5] Tronin S. N., “Abstraktnye klony i operady”, Sib. matem. zhurn., 43:4 (2002), 924–936 | MR | Zbl

[6] Tronin S. N., “Operady i mnogoobraziya algebr, opredelyaemye polilineinymi tozhdestvami”, Sib. matem. zhurn., 47:3 (2006), 670–694 | MR | Zbl

[7] Semenova A. V., “Algebry nad operadoi konechnykh pomechennykh grafov”, Izv. vuzov. Matematika, 2006, no. 6, 65–73 | MR

[8] Abdulmyanova L. T., “O stroenii operady turnirov”, Lobachevskie chteniya – 2006, Materialy 5-i molodezhnoi nauchnoi shkoly-konferentsii (Kazan, 28 noyabrya – 2 dekabrya 2006 g.), Tr. Matem. tsentra im. N. I. Lobachevskogo, 34, Izd-vo Kazanskogo matem. ob-va, Kazan, 2006, 3–4

[9] Kharari F., Palmer E., Perechislenie grafov, Mir, M., 1977, 324 pp. | MR

[10] Kharari F., Teoriya grafov, Mir, M., 1973, 304 pp. | MR

[11] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990, 384 pp. | MR | Zbl