The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2009), pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we estimate the order of approximation of S. M. Nikol'skii and O. V. Besov classes in the norm of the anisotropic Lorentz space. We also obtain bounds for ortho-diameters of these classes.
Keywords: approximation, Lorentz space, ortho-diameter.
@article{IVM_2009_2_a1,
     author = {G. A. Akishev},
     title = {The ortho-diameters of {Nikol'skii} and {Besov} classes in the {Lorentz} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--33},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_2_a1/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 25
EP  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_2_a1/
LA  - ru
ID  - IVM_2009_2_a1
ER  - 
%0 Journal Article
%A G. A. Akishev
%T The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 25-33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_2_a1/
%G ru
%F IVM_2009_2_a1
G. A. Akishev. The ortho-diameters of Nikol'skii and Besov classes in the Lorentz spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2009), pp. 25-33. http://geodesic.mathdoc.fr/item/IVM_2009_2_a1/

[1] Blozinski A. P., “Multivariate rearrangements and Banach function spaces with mixed norms”, Trans. Amer. Math. Soc., 263 (1981), 149–167 | DOI | MR | Zbl

[2] Nursultanov E. D., “O koeffitsientakh kratnykh ryadov Fure iz $L_p$-prostranstv”, Izvestiya RAN. Ser. matem., 64:1 (2000), 95–122 | MR | Zbl

[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, Fizmatlit, M., 1977, 456 pp. | MR

[4] Lizorkin P. I., Nikolskii S. M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN, 187, Nauka, M., 1989, 143–161 | MR

[5] Amanov T. I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976, 171 pp. | MR

[6] Temlyakov V. N., “Poperechniki nekotorykh klassov funktsii neskolkikh peremennykh”, DAN SSSR, 267:2 (1982), 314–317 | MR

[7] Temlyakov V. N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Tr. MIAN, 178, Nauka, M., 1986, 113 pp. | MR | Zbl

[8] Din Zung, “Priblizhenie funktsii mnogikh peremennykh na tore trigonometricheskimi polinomami”, Matem. sb., 131(173):2 (1986), 251–271 | Zbl

[9] Galeev E. M., “Poryadki ortoproektsionnykh poperechnikov klassov periodicheskikh funktsii odnoi i neskolkikh peremennykh”, Matem. zametki, 43:2 (1988), 197–211 | MR | Zbl

[10] Pustovoitov N. N., “Ortopoperechniki nekotorykh klassov periodicheskikh funktsii dvukh peremennykh s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Izv. RAN. Ser. matem., 64:1 (2000), 123–144 | MR | Zbl

[11] Akishev G. A., “Neravenstva raznykh metrik dlya polinomov i ikh prilozheniya”, Materialy 10-i mezhvuz. konf. (7–9 oktyabrya 2004, Almaty), 2005, 53–60

[12] Akishev G. A., “O poryadkakh priblizheniya klassov Besova trigonometricheskimi polinomami”, Vestnik KarGU. Ser. matem., 2004, no. 3, 9–16 | MR

[13] Akishev G. A., “O poryadkakh priblizheniya funktsionalnykh klassov v prostranstve Martsinkevicha”, Matem. zhurnal (Almaty), 4:4(14) (2004), 10–19 | MR | Zbl

[14] Rodin V. A., “Neravenstva Dzheksona i Nikolskogo dlya trigonometricheskikh polinomov v simmetrichnom prostranstve”, Tr. 7-i zimnei shkoly, Drogobych, 1974, 133–139

[15] Sherstneva L. A., “Neravenstva Nikolskogo dlya trigonometricheskikh polinomov v prostranstvakh Lorentsa”, Vestn. MGU. Cer. matem., mekhan., 1984, no. 4, 75–79 | MR | Zbl