A nonlinear descent method for a~variational inequality on a~nonconvex set
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 66-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a generalized variational inequality problem which involves the integrable cost mapping and a nonsmooth mapping with convex components. We propose a new gradient type method, which determines a stepsize by using the smooth part of the cost function. Thus, the method does not utilize analogs of derivatives of non-smooth functions. We show that its convergence does not require additional assumptions.
Keywords: generalized variational inequality, nonsmooth mapping, nonlinear descent method.
@article{IVM_2009_1_a2,
     author = {I. V. Konnov},
     title = {A nonlinear descent method for a~variational inequality on a~nonconvex set},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {66--75},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_1_a2/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - A nonlinear descent method for a~variational inequality on a~nonconvex set
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 66
EP  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_1_a2/
LA  - ru
ID  - IVM_2009_1_a2
ER  - 
%0 Journal Article
%A I. V. Konnov
%T A nonlinear descent method for a~variational inequality on a~nonconvex set
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 66-75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_1_a2/
%G ru
%F IVM_2009_1_a2
I. V. Konnov. A nonlinear descent method for a~variational inequality on a~nonconvex set. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 66-75. http://geodesic.mathdoc.fr/item/IVM_2009_1_a2/

[1] Isac G., Complementarity problems, Springer, Berlin, 1992, 297 pp. | MR | Zbl

[2] Yao J.-C., “Existence of generalized variational inequalities”, Oper. Res. Lett., 15:1 (1995), 35–40 | DOI | MR

[3] Konnov I. V., “Kombinirovannyi relaksatsionnyi metod dlya obobschennykh variatsionnykh neravenstv”, Izv. vuzov. Matematika, 2001, no. 12, 46–54 | MR | Zbl

[4] Nurminskii E. A., Shamrai N. B., “Metod lokalnykh vypuklykh mazhorant dlya variatsionno-podobnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 47:3 (2007), 355–363 | MR | Zbl

[5] Martos B., Nonlinear programming: theory and methods, Akad. Kiado, Budapest, 1975, 279 pp. | MR

[6] Sukharev A. G., Timokhov A. V., Fedorov V. V., Kurs metodov optimizatsii, Nauka, M., 1986, 328 pp. | MR | Zbl

[7] Burke J. V., “Descent methods for composite nondifferentiable optimization problems”, Math. Progr., 33:3 (1985), 260–279 | DOI | MR | Zbl

[8] Jeyakumar V., Yang X. Q., “Convex composite minimization with $C^{1,1}$ functions”, J. Opt. Theory Appl., 86:3 (1995), 631–648 | DOI | MR | Zbl

[9] Kun G. U., “Ob odnoi teoreme Valda”, Lineinye neravenstva i smezhnye voprosy, In. lit., M., 1959, 363–371

[10] Konnov I. V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 42:9 (2002), 1324–1337 | MR | Zbl

[11] Konnov I. V., Equilibrium models and variational inequalities, Elsevier, Amsterdam, 2007, 248 pp.

[12] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[13] Konnov I. V., Metody nedifferentsiruemoi optimizatsii, Izd-vo Kazansk. un-ta, Kazan, 1993, 100 pp.

[14] Panagiotopulos P., Neravenstva v mekhanike i ikh prilozheniya, Mir, M., 1989, 494 pp. | MR

[15] Hogan W. W., “Point-to-set maps in mathematical programming”, SIAM Rev., 15:3 (1973), 591–603 | DOI | MR | Zbl