Fej\'er processes in theory and practice: recent results
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 44-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we briefly survey the recent results of the theory of Fejér mappings and processes as applied to solving various mathematical problems, including structured systems of linear and convex inequalities, operator equations, as well as problems of linear and quadratic programming which are not necessarily solvable (improper ones).
Keywords: Fejér mappings and methods, systems of convex inequalities, mathematical programming, duality theory, nonstationary processes, contradictory statements.
@article{IVM_2009_1_a1,
     author = {I. I. Eremin and L. D. Popov},
     title = {Fej\'er processes in theory and practice: recent results},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--65},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_1_a1/}
}
TY  - JOUR
AU  - I. I. Eremin
AU  - L. D. Popov
TI  - Fej\'er processes in theory and practice: recent results
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 44
EP  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_1_a1/
LA  - ru
ID  - IVM_2009_1_a1
ER  - 
%0 Journal Article
%A I. I. Eremin
%A L. D. Popov
%T Fej\'er processes in theory and practice: recent results
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 44-65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_1_a1/
%G ru
%F IVM_2009_1_a1
I. I. Eremin; L. D. Popov. Fej\'er processes in theory and practice: recent results. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 44-65. http://geodesic.mathdoc.fr/item/IVM_2009_1_a1/

[1] Eremin I. I., Mazurov V. D., Nestatsionarnye protsessy matematicheskogo programmirovaniya, Nauka, M., 1979, 288 pp. | MR

[2] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. (Teoriya i prilozheniya), Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2005, 200 pp.

[3] Eremin I. I., Lineinaya optimizatsiya i sistemy neravenstv, Izd. tsentr “Akademiya”, M., 2006, 300 pp.

[4] Eremin I. I., Mazurov V. D., Astafev N. N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[5] Eremin I. I., Theory of linear optimization. Inverse and ill-posed problems, Series VSP, Utrecht–Boston–Keln–Tokyo, 2002, 248 pp. | MR

[6] Berdnikova E. A., Eremin I. I., Popov L. D., “Raspredelennye feierovskie protsessy dlya sistem lineinykh neravenstv i zadach lineinogo programmirovaniya”, Avtomatika i telemekhan., 2004, no. 2, 16–32 | MR | Zbl

[7] Berdnikova E. A., Popov L. D., “O primenenii dekompozitsii pri realizatsii feierovskikh metodov resheniya bolshikh sistem lineinykh neravenstv na MVS-100”, Algoritmy i programmnye sredstva parallelnykh vychislenii, Vyp. 4, UrO RAN, Ekaterinburg, 2000, 51–62

[8] Eremin I. I., Popov L. D., “Parallelnye feierovskie metody dlya silno strukturirovannykh sistem lineinykh neravenstv i uravnenii”, Algoritmy i programmnye sredstva parallelnykh vychislenii, Vyp. 6, UrO RAN, Ekaterinburg, 2003, 57–82

[9] Eremin I. I., Popov L. D., “Feierovskie metody dekompozitsii silno strukturirovannykh sistem lineinykh neravenstv”, Optimizatsiya. Upravlenie. Intellekt, 2005, no. 9, 60–71 | MR

[10] Eremin I. I., “Feierovskie protsessy: sintez i randomizatsiya”, Tr. In-ta matem. i mekhan., 10:2 (2004), 58–68

[11] Eremin I. I., “Feierovskie metody silnoi otdelimosti vypuklykh poliedralnykh mnozhestv”, Izv. vuzov. Matematika, 2006, no. 12, 33–43 | MR

[12] Eremin I. I., “Pryamo-dvoistvennye feierovskie metody dlya zadach kvadratichnogo programmirovaniya”, Tr. In-ta matem. i mekhan., 12:1 (2006), 86–97 | MR

[13] Eremin I. I., “Iterativnaya otdelimost neperesekayuschikhsya mnogogrannikov”, Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi, Tr. mezhdunarodnogo seminara, T. 2 (Ekaterinburg, 22–26 iyunya 2005 g.), UrO RAN, Ekaterinburg, 2006, 18–26

[14] Eremin I. I., Popov L. D., “Feierovskie iteratsionnye protsessy dlya nesovmestnykh sistem lineinykh neravenstv i nesobstvennykh zadach lineinogo programmirovaniya”, Sovremennye metody optimizatsii i ikh primenenie v sistemakh energetiki, Sb. nauch. statei, ISEM SO RAN, Irkutsk, 2003, 86–109

[15] Eremin I. I., Popov L. D., “Dvoistvennost i feierovskie protsessy dlya nesobstvennykh zadach lineinogo programmirovaniya”, Algoritmy i programmnoe obespechenie parallelnykh vychislenii, UrO RAN, Ekaterinburg, 2005, 129–149

[16] Popov L. D., “Ob odnoetapnom metode resheniya leksikograficheskikh variatsionnykh neravenstv”, Izv. vuzov. Matematika, 1998, no. 12, 71–81 | MR | Zbl

[17] Popov L. D., “Lexicographic variational inequalities and some applications”, Proceedings of the Steklov Institute of math., Suppl. 1 (2002), S101–S115 | MR

[18] Eremin I. I., Popov L. D., “Zamknutye feierovskie tsikly dlya nesovmestnykh sistem vypuklykh neravenstv”, Izv. vuzov. Matematika, 2008, no. 1, 11–19 | MR

[19] Eremin I. I., Sokolinskaya I. M., “Feierovskie iteratsionnye protsessy dlya nesobstvennykh zadach lineinogo programmirovaniya”, Matem. struktury i modelirovanie, Vyp. 9, Omsk. un-t, Omsk, 2002, 1–17

[20] Eremin I. I., Patsko S. V., “Fejér processes for infinite systems of convex inequalities”, Proceedings of the Steklov Institute of math., Suppl. 1 (2002), S32–S51 | MR