Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 3-43

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper surveys theoretical results on the Pontryagin maximum principle (together with its conversion) and nonlocal optimality conditions based on the use of the Lyapunov-type functions (solutions to the Hamilton–Jacobi inequalities). We pay special attention to the conversion of the maximum principle to a sufficient condition for the global and strong minimum without assumptions of the linear convexity, normality, or controllability. We give the survey of computational methods for solving classical optimal control problems and describe nonstandard procedures of nonlocal improvement of admissible processes in linear and quadratic problems. Furthermore, we cite some recent results on the variational principle of maximum in hyperbolic control systems. This principle is the strongest first order necessary optimality condition; it implies the classical maximum principle as a consequence.
Keywords: maximum principle, Hamilton–Jacobi inequalities, nonlocal computational methods, variational maximum principle.
@article{IVM_2009_1_a0,
     author = {A. V. Arguchintsev and V. A. Dykhta and V. A. Srochko},
     title = {Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--43},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_1_a0/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
AU  - V. A. Dykhta
AU  - V. A. Srochko
TI  - Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 3
EP  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_1_a0/
LA  - ru
ID  - IVM_2009_1_a0
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%A V. A. Dykhta
%A V. A. Srochko
%T Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 3-43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_1_a0/
%G ru
%F IVM_2009_1_a0
A. V. Arguchintsev; V. A. Dykhta; V. A. Srochko. Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2009), pp. 3-43. http://geodesic.mathdoc.fr/item/IVM_2009_1_a0/