Optimal problems for parabolic-type systems with aspheric sets of admissible controls
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 74-79

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimization problem for one class of parabolic systems with aspheric sets of admissible controls and establish an existence theorem for its optimal solution. We apply the obtained results to the study of one mathematical heat-exchange model.
Keywords: optimal control, parabolic systems, topological degree, aspheric set.
@article{IVM_2009_12_a8,
     author = {E. S. Baranovskii},
     title = {Optimal problems for parabolic-type systems with aspheric sets of admissible controls},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--79},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - Optimal problems for parabolic-type systems with aspheric sets of admissible controls
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 74
EP  - 79
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/
LA  - ru
ID  - IVM_2009_12_a8
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T Optimal problems for parabolic-type systems with aspheric sets of admissible controls
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 74-79
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/
%G ru
%F IVM_2009_12_a8
E. S. Baranovskii. Optimal problems for parabolic-type systems with aspheric sets of admissible controls. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 74-79. http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/