Optimal problems for parabolic-type systems with aspheric sets of admissible controls
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimization problem for one class of parabolic systems with aspheric sets of admissible controls and establish an existence theorem for its optimal solution. We apply the obtained results to the study of one mathematical heat-exchange model.
Keywords: optimal control, parabolic systems, topological degree, aspheric set.
@article{IVM_2009_12_a8,
     author = {E. S. Baranovskii},
     title = {Optimal problems for parabolic-type systems with aspheric sets of admissible controls},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--79},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - Optimal problems for parabolic-type systems with aspheric sets of admissible controls
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 74
EP  - 79
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/
LA  - ru
ID  - IVM_2009_12_a8
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T Optimal problems for parabolic-type systems with aspheric sets of admissible controls
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 74-79
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/
%G ru
%F IVM_2009_12_a8
E. S. Baranovskii. Optimal problems for parabolic-type systems with aspheric sets of admissible controls. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 74-79. http://geodesic.mathdoc.fr/item/IVM_2009_12_a8/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR | Zbl

[2] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 350 pp. | Zbl

[3] Zvyagin V. G., Kuzmin M. Yu., “Ob odnoi zadache optimalnogo upravleniya v modeli Foigta dvizheniya vyazkouprugoi zhidkosti”, Sovremen. matem. Fundamentalnye napravleniya, 16, 2006, 38–46 | MR

[4] Baranovskii E. S., Zvyagin V. G., “Konstruktsiya stepeni odnogo klassa mnogoznachnykh vozmuschenii operatorov, udovletvoryayuschikh usloviyu alfa”, Nelineinye granichnye zadachi, 16 (2006), 107–117

[5] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[6] Gorniewicz L., Topological fixed point theory of multivalued mappings, Kluwer Academic Publishers, Dordrecht–Boston–London, 1999, 399 pp. | MR | Zbl

[7] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 214 pp.

[8] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990, 448 pp. | MR | Zbl