Pseudoconformally-flat and pseudo-flat quasi-Sasakian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a theory of pseudoconformally-flat (i.e., simultaneously contact self-dual and contact anti-self-dual) and pseudo-flat (i.e., simultaneously contact $R$-self-dual and contact $R$-anti-self-dual) 5-dimensional quasi-Sasakian manifolds.
Keywords: quasi-Sasakian manifolds, Sasakian manifolds, cosymplectic manifolds, pseudoconformally-flat manifolds, pseudo-flat manifolds.
@article{IVM_2009_12_a7,
     author = {A. V. Aristarkhova},
     title = {Pseudoconformally-flat and pseudo-flat {quasi-Sasakian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--73},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a7/}
}
TY  - JOUR
AU  - A. V. Aristarkhova
TI  - Pseudoconformally-flat and pseudo-flat quasi-Sasakian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 69
EP  - 73
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a7/
LA  - ru
ID  - IVM_2009_12_a7
ER  - 
%0 Journal Article
%A A. V. Aristarkhova
%T Pseudoconformally-flat and pseudo-flat quasi-Sasakian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 69-73
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a7/
%G ru
%F IVM_2009_12_a7
A. V. Aristarkhova. Pseudoconformally-flat and pseudo-flat quasi-Sasakian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 69-73. http://geodesic.mathdoc.fr/item/IVM_2009_12_a7/

[1] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London. Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl

[2] Chen B. Y., “Some topological obstructions to Bochner–Kaehler metrics and their applications”, J. Diff. Geom., 13 (1978), 547–558 | MR | Zbl

[3] Bourguignon J.-P., “Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein”, Invent. Math., 63 (1981), 263–286 | DOI | MR | Zbl

[4] Derdzinski A., “Self-duality of Kähler manifolds and Einstein manifolds of dimensional four”, Compos. Math., 49 (1983), 405–433 | MR | Zbl

[5] Itoh M., “Self-duality of Kähler surfaces”, Compos. Math., 51 (1984), 265–273 | MR | Zbl

[6] Arseneva O. E., “Avtodualnaya geometriya kelerovykh mnogoobrazii”, Matem. sb., 184:8 (1993), 137–148 | MR | Zbl

[7] Arseneva O. E., Kirichenko V. F., “Avtodualnaya geometriya ermitovykh poverkhnostei”, Matem. sb., 189:1 (1998), 21–44 | MR | Zbl

[8] Besse A., Mnogoobraziya Einshteina, T. 1–2, Mir, M., 1990, 704 pp. | MR | Zbl

[9] Penrose R., “The twistor programme”, Math. Phis. Repts., 12 (1977), 65–76 | DOI | MR

[10] Aristarkhova A. V., Kirichenko V. F., “Kontaktno-avtodualnaya geometriya 5-mernykh kvazi-sasakievykh mnogoobrazii”, Izv. RAN. Ser. matem. (to appear)

[11] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progr. in Math., 203, Birkhäuser-Boston, Boston, 2002, 260 pp. | MR | Zbl

[12] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003, 495 pp.

[13] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967, 664 pp. | MR

[14] Blair D. E., “The theory of quasi-sasakian structures”, J. Diff. Geom., 1 (1967), 331–345 | MR | Zbl

[15] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl