Nonlocal initial-boundary-value problems for a~degenerate hyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 49-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equation $y^mu_{xx}-u_{yy}-b^2y^mu=0$ in the rectangular area $\{(x,y)\mid0$, where $m>0$, $b\ge0$, $T>0$ are given real numbers. For this equation we study problems with initial conditions $u(x,0)=\tau(x)$, $u_y(x,0)=\nu(x)$, $0\le x\leq1$, and nonlocal boundary conditions $u(0,y)=u(1,y)$, $u_x(0,y)=0$ or $u_x(0,y)=u_x(1,y)$, $u(1,y)=0$ with $0\le y\le T$. Using the method of spectral analysis, we prove the uniqueness and existence theorems for solutions to these problems.
Keywords: nonlocal problem, spectral method, completeness, sum of biorthogonal series.
@article{IVM_2009_12_a5,
     author = {Yu. K. Sabitova},
     title = {Nonlocal initial-boundary-value problems for a~degenerate hyperbolic equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--58},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a5/}
}
TY  - JOUR
AU  - Yu. K. Sabitova
TI  - Nonlocal initial-boundary-value problems for a~degenerate hyperbolic equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 49
EP  - 58
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a5/
LA  - ru
ID  - IVM_2009_12_a5
ER  - 
%0 Journal Article
%A Yu. K. Sabitova
%T Nonlocal initial-boundary-value problems for a~degenerate hyperbolic equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 49-58
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a5/
%G ru
%F IVM_2009_12_a5
Yu. K. Sabitova. Nonlocal initial-boundary-value problems for a~degenerate hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 49-58. http://geodesic.mathdoc.fr/item/IVM_2009_12_a5/

[1] Frankl F. I., “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, PMM, 20:2 (1956), 196–202 | MR | Zbl

[2] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnym usloviem na obeikh kharakteristikakh i s razryvami na perekhodnoi linii”, Uchen. zap. Kazansk. un-ta, 122, no. 3, 1962, 3–16 | MR | Zbl

[3] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s nelokalnymi kraevymi usloviyami”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[4] Ionkin N. I., “Ob ustoichivosti odnoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 15:7 (1979), 1279–1283 | MR | Zbl

[5] Ionkin N. I., Moiseev E. I., “O zadache dlya uravneniya teploprovodnosti s dvutochechnymi kraevymi usloviyami”, Differents. uravneniya, 15:7 (1979), 1284–1295 | MR | Zbl

[6] Lerner M. E., Repin O. A., “O zadachakh tipa zadachi Franklya dlya nekotorykh ellipticheskikh uravnenii s vyrozhdeniem raznogo roda”, Differents. uravneniya, 35:8 (1999), 1087–1093 | MR | Zbl

[7] Lerner M. E., Repin O. A., “Nelokalnye kraevye zadachi v vertikalnoi polupolose dlya obobschennogo osesimmetricheskogo uravneniya Gelmgoltsa”, Differents. uravneniya, 37:11 (2001), 1562–1564 | MR | Zbl

[8] Moiseev E. I., “O reshenii spektralnym metodom odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 35:8 (1999), 1094–1100 | MR | Zbl

[9] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl

[10] Sabitov K. B., Sidorenko O. G., “Nelokalnaya zadacha dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Tr. Vserossiisk. nauchn. konferentsii “Sovremen. probl. fiz. i matem.”, T. 1, Ufa, 2004, 80–86

[11] Beitmen G., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966, 296 pp.